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PREFACE

This book has come into being as a result of the author’s lectures on mathematical
modelling rendered to the students, BS and MS degree holders specializing in
applied mathematics and computer science and to post-graduate students in exact
sciences of the Nizhny Novgorod State University after N.I. Lobatchevsky. These
lectures are adapted and presented as a single whole about mathematical models
and modelling.

This new course of lectures appeared because the contemporary Russian
educational system in applied mathematics rested upon a combination of
fundamental and applied mathematics training; this way of training oriented
students upon solving only the exactly stated mathematical problems, and thus
there was created a certain estrangement to the most essential stages and sides of
real solutions for applied problems, such as thinking over and deeply piercing the
essence of a specific problem and its mathematical statement. This statement
embraces simplifications, adopted idealizations and creating a mathematical
model, its correction and matching the results obtained against a real system.
There also existed another main objective, namely to orient university graduates in
their future research not only upon purely mathematical issues but also upon
comprehending and widely applying mathematics as a universal language of
contemporary exact science, and mathematical modelling as a powerful means for
studying nature, engineering and human society.

The author of this book is a pupil of A.A. Andronov’s world-known scientific
school on nonlinear oscillations theory. This very fact has determined the choice
of the models under consideration. They are evolutionary models, i.e. the models
for time-varying processes: dynamics, control, training, computational processes,
recognition and optimization. These models describe systems of various nature,
viz. mechanical, physical, chemical, biological, technical, ecological, social, etc. A
unifying basis for this entire collection is a universal all-embracing mathematical
model, i.e. a dynamical system.

The book may be interesting and useful for a vast spectrum of readers. To the
students of various fields of natural science, engineering and other educational
establishments, to researchers encountering difficulties in modelling or facing the
situations where modelling may be of use, and also to those being curious and
willing to find out how mathematics studies the surrounding world making it
possible for us to understand and explain mysterious phenomena, foresee future
changes, comprehend properties and foretell the behaviour of not only existing
systems and processes but also those that can be imagined or invented.
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To its utmost degree, modelling is an art and so beauty plays in it not a last role,
the beauty of the model, the beauty of studying it, and, at last, the beauty of
explaining through it the mysterious and nontrivial phenomena and properties of
the system under study. Perhaps, creating and studying some models this book
suggests will bring you some aesthetic pleasure.

This book could not have appeared had I no patient and thankful students of the
VMK Faculty of Computational Mathematics and Cybemetics, the NNGU
Nizhny Novgorod State University after N.I. Lobatchevsky. A priceless
contribution has been performed by Victor Sh. Berman who helped me very much
to perfect the lectures used as a basis of this book. Unfailing support for my
interest to mathematical models has been exerted by my former post-graduate
students and at present the First Prorector, NNGU Prof. Roman G. Strongin and
the Dean of the VMK Faculty Dr. Vladimir P. Savel’ev. In preparing the
manuscript for publication a great assistance has been given by Dr. Nadezhda K.
Shavina and Irina S. Gel’fer. The manuscript has been translated into English by
Dr. Victor 1. Gloumov and Prof. Mark M. Kogan. To all of them I am expressing
my gratitude and appreciation.
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Introduction

In this book you will become familiar with various mathematical models for
mechanical, electrical, physical, astronomical, chemical, biological, ecological,
cybernetical and other systems and processes. In addition, this book will help you
to form your own scientific understanding and attitude towards “applied mathe-
matics”, and other mathematical subjects you are studying.

You would like to study and comprehend the surrounding world and to this you
are driven by your heredity. Why are you then trained in abstract and hard under-
standable mathematics isolated from the living world, i.e. in numbers, vectors,
matrices, functions, operations upon them, differentiating, integrating, etc ?

I guess you know how to answer this question in general — mathematics is a ba-
sis for the scientific study of the world. However, why is this abstract mathematics
lying so far from our specific, touchable and beautiful world so essential for world
study? Why is it not, say, astrology that is capable of foretelling the future on the
basis of positions of stars?

What is the method for applying mathematics to studying the world and
foretelling the future?

Perhaps, for this last question you also know the answer — we are compre-
hending the world through creating and studying its mathematical models.

So together we shall construct mathematical models and study them, and in this
way we shall pierce the secrets of the world we are living in.

What is a model? The word “model” is borrowed from Italian and means “a
copy”, “a template”, “a prototype” upon studying which we have the original al-
ready studied. Therefore, a mathematical model makes up a prototype of some
fragment of the world — that of some system, device, machine, process, apparatus,
and through studying this prototype we are understanding this fragment of the
world.

What is then mathematics and what is its role in creating this auxiliary model?
Why can this model be studied by us? Why then upon studying it are we capable
of studying the world? Finally, what is, after all, mathematics? I think you are not
aware of all of the answers to these questions.

To the answers to these questions we shall be approaching from far away.

Once long ago, in the last century at one scientific sitting there was noisily dis-
cussed the issue as to the role of languages and mathematics in training students.
The debates lasted long. One side stood up for the role of languages, and another
for the importance of mathematics. Among disputants was the great scientist
J. W. Gibbs. This is the very scientist who stated that a whole is simpler than its
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part; that to study some accumulation of milliards of molecules is simpler than a
single molecule. He did not only state but proved it by his wonderful scientific
discoveries. He was respected by everybody and was a great taciturn. However
here, to everybody’s astonishment, he asked to give him the floor and stated:
“Mathematics is a language”.

What did he imply? What is common between Russian, Enghsh Greek, French
and other languages, and mathematics? This common lies in the following: any
natural language describes human actions, feelings, wishes, reminiscences, sug-
gestions, opinions, orders, etc., and mathematics is a language for describing na-
ture; it is a language of scientific knowledge of the world. If you wish to speak to
a Frenchman, you need to have the French language studied, to speak to an Eng-
lishman the English language, and to nature, the mathematical language. Nature
discloses its mysteries to us only in terms of the mathematical language, and if
you wish to comprehend these mysteries you need to have the mathematical lan-
guage studied, to have mathematics studied. Speaking to nature and engineering,
being also a portion of nature but created by man, is performed in the mathemati-
cal language.

Human languages are specific; each word in them is assigned some specific
meaning. In contrast to this, the mathematical language is abstract. However, they
both are languages and this difference is not so essential. Imagine that you have
seen an inscription on the fence:

“Nhiseful mitteler rims qoptly”

At first, you took it as something gibberish, but upon thinking it over you
realise that there exists a certain “mitteler” which is “nhiseful”, and that this
“mitteler” “rims” and performs this action “qoptly”. Right now, match this phrase
against the following mathematical phrases

(a+b)? =a’>+2ab+b*,
d d
0<—x(t) <— (1),
y (1) dty()

Iudv =uv — |vdu.

In the second mathematical phrase it is said that some magnitude x(#) in-
creases with 7 slower than the magnitude )(¢) does. What X and ) represent is

not known, nor what @ and b are equal to in the first phrase.

Linguistic descriptions of our life — stories, life-stories, novels — are its lan-
guage models. Descriptions of natural phenomena in the mathematical language
are their mathematical models, i.e. mathematics is a language of exact sciences,
and mathematical models are a description of systems and processes of nature or
engineering in terms of the mathematical language.

For writing a good school composition you need to know well what you are
writing about. The same owns for mathematical models — to have a robust mathe-
maticalmodelyousneed to have a.clearidea about what you want to describe; to
distinguish essential from secondary. In addition, you need to understand the es-
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sence and regularities of the running processes, phenomena and their interrela-
tions. Finally, you need to be skilful in describing all these things in the mathe-
matical language.

Writing a composition is not simple, but reading and understanding it is usually
simple. Though at times this simplicity is deceptive. Compiling a model is also
rather difficult, and understanding it is sometimes not so simple, and at times it
requires even a lot of effort. To understand the model and what it describes, it is
necessary to have it studied, and this study may turn out to be very complicated
and difficult.

Now I think you understand in general what my book is about.

However, there remains the following question not yet answered: why in
studying a mathematical model of a real system or process do we also get the pos-
sibility to study them themselves? As said above they are so different and seem-
ingly have nothing in common. This question is not so simple. One of the well-
known mathematicians called this wonderful possibility “incomprehensible”.
Though, this seems not absolutely so. Something here can be comprehended.

Everything here rests upon isomorphism. We shall touch this point later on, but
for now still note only that differences between a real system and a model are not
so terrible. How a TV set runs can be understood through its radio circuit looking
absolutely different from the TV set itself. Streets in the city can be made out
through its maps.

Now I am coming to the story about one of basic models in natural science and
engineering, a dynamical system.
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Mathematics as a language. Mathematical models. Mathematical modelling
as a method of studying the surrounding world. The Laplace determinism.
A dynamical system as a basic mathematical model in the natural sciences.
A phase portrait. Examples of dynamical systems and their phase portraits.
A phase portrait as a means of geometrical representation of our knowledge
about a dynamical system and as a means of its study.

Archimedes, having perceived the law of the lever and being excited by the mys-
tery of nature unveiled to him, exclaimed: “Give me a fulcrum and I shall turn
over the world”.

Many centuries ago, in the 18th century, the great mathematician and astrono-
mer Pierre S. Laplace, being impressed by a revealed scientific picture of the uni-
verse and by causal relationships between all phenomena, expressed his enlight-
ment with the words: “I shall predict in all details the entire future, everything that
will come for all centuries ahead, from the smallest to the biggest things, if you
tell me or completely describe what state the contemporary world is in”.

It was an apotheosis of determinism, a full causative relationship of the future
with the present.

Clear it is that nobody could accuse Laplace of lying or being wrong, since who
is able to describe the universe in full? It would be nice to describe a portion even
partially. And what then? Isn’t a human being capable of predicting ? Well, some-
times prediction is possible. Now let us try to clear it up for ourselves when it is
possible and when not, and what it depends upon. Meanwhile, let us understand
why it was stated so by Laplace.

It was stated in this way thanks to great astronomical achievements. In astron-
omy, a full understanding of the causes guiding the movement of planets was
gained and it became possible to calculate planets’ orbits for many years ahead.
Alongside, a mechanistic picture of the universe was established, in which all
things occurring in the world were explained through a mechanical motion of the
tiniest material particles, molecules. Such are the caprices of the history that the
greatest enlightments came into science “from the heavens”, thanks to the astro-
nomical achievements.

The movement of planets, the travelling stars, attracted the attention of man-
kind for a long time. At present, we have nothing to do with them, but in that dis-
tant past it was far from so. Well known that time was the Ptolemaic system of the
universe. It described sufficiently well visible the movements of planets (Mercury,
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Venus, Mars, Moon, Jupiter, Saturn) and of the Sun. A more simple description
was given by the Copernicus system, though it was Newton who explained them
via his laws for the mechanical motion and universal gravity. He revealed that this
mechanical motion of a material point is described by a second-order differential
equation and is determined uniquely through its initial position and velocity. From
this it followed that the movement of all planets and of the Sun can be exactly
calculated if their masses, initial positions and velocities are known. The calcula-
tion itself was carried out by Newton only for two mutually attracting free solids,
but in principle this is not essential. Very soon people learned how to approxi-
mately calculate, but with a magnificent accuracy, the movement of all planets.
Nowadays this is done easily with use of computers. Thus, there exists some de-
scription for planets through which the future can be predicted, i.e. how this de-
scription will vary in the future. Such a description was called a state of the me-
chanical system. To some extent this notion of a state can be generalized and ap-
plied not to mechanical systems only. It is in this way that exact natural sciences
proceeded to study evolutionary processes and predict the future.

The idea of determinism that so much excited Laplace, the idea of a temporal
causality and a unique conditionality of events in our world, can be thought as a
token of relationships existing between the descriptions of the past and the pres-
ent.

Here it is senseless to talk about the relation of the entire past with the entire
present, since a possibility to actually investigate these relations arises only when
a certain part of something is chosen both from the description and the medium.
Choosing a subject for investigation in such a way was described by Newton as
concentrating attention upon separate attractive beautiful pebbles on a boundless
pebbly sea-shore. The “pebble” we will choose will be called a system, and what
in it catches our attention will be called a description of the system. This descrip-
tion may be denoted by x . It is time-dependent, and it is not obligatory that the
principle of determinism should be true for it, i.e. the fact that the past description

x(t,) defines the future description ~ x(%, ), (t, >t ). This is so only when

we are very lucky both in choosing a pebble and in choosing what is attracting us
n it

Now I am coming to some examples on how to choose the “pebbles” and de-
scribe them. Prior to this, I would like to tell you some more about the Laplace
determinism, to protect him, so to say, against natural claims that commonly ob-
servable randomness was not supposedly observed and ignored by him. No, he
observed it. Moreover, it was he who introduced into science the well-known ran-
dom magnitude distributed by the widely employed normal law, the Laplace law.
Though, as well as Albert Einstein, he did not believe that God plays dice. He did
not know how to explain the observable randomness, but this did not hamper him
accepting the deterministic picture of the world. That was right, since random pro-
cesses admit a deterministic description, but we shall touch on this point later.
Now we return to our previous talk.

Here is a small piece of chalk in my hands. I may be interested in knowing how
it writes on the blackboard and why it'does this. [t means that I shall be interested
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in its property and its description from the point of view of its capability for writ-
ing on a blackboard. However I can use this chalk for simply throwing it or re-
leasing it and see how it is falling down. In this last case I can be lucky and reveal
a law for heavy solids falling onto earth, thus revealing a triumph of determinism.

I can also pay attention to a glass of hot tea and ponder over why it has such a
taste and smell and what it is. I can be curious about when the tea at last gets cold
and one can drink it. In the last case, I am interested only in the tea temperature
described by the Centigrade scale. If I am persistent enough, I shall find, perhaps,
a law of its decrease, thus confirming a general idea of determinism.

Similar examples can be given endlessly — a burning candle that attracted Mi-
chael Faraday’s attention; the motion of Earth around the Sun studied by Johannes
Kepler and Isaac Newton; an electrical circuit of a capacitance and a self-
inductance, whose mystery of oscillation was unveiled by Benjamin Thompson;
an atom whose first model (description of the structure) was suggested by Nils
Bohr; Earth’s atmosphere that affects weather which we are still not able to fore-
cast; a living organism that until now is yet full of secrets for us; and the abso-
lutely mysterious human brain.

Upon these sketchy examples let us now consider some in more details. Let us
follow two cyclists on a cycle track. They started at the same time, and he who
finishes first will be winner. How much time they ride does not matter, and this
yields the situation that neither rushes forward but is manoeuvring to try to de-
ceive his rival and arrive first at the finish. Simply to dash to the finish headlong is
not good, since his rival can stay at his tai spending substantially less efforts, and
will easily outrun him before the finish.

To describe this situation, let us take the angles @, and @, to represent the
first and second cyclists (figure 1.1).

Fig.1.1. A view from above of the racing track and a racing event of the cyclists 1 and 2.

The plots of the functions ¢, (#) and @, (f) provide a good representation of

how the race was running (figure 1.2). For this case, two curves are drawn. The
course of the competition can be expressed through a single curve in the plane

@, , ¢, . (Here a start corresponds to the angle @ = 0 and a finishto @ = 27).
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27

@it
P(t)

t

Fig. 1.2. The time plots of @, (#) and ¢, () for one of the races.

Upon some time, the point M of the coordinates @, and @, will describe some
curve (figurel.3). Its form also demonstrates how the competition was running.

27

@i

2

Fig. 1.3. Depicting a race of the cyclists on the (¢ |, @, ) - plane.

According to figure 1.3, the first to leave the start line was the first cyclist, and
the second cyclist was behind his rival all the way until the finish, and just before
the finish he overran the rival and came first.

In figure 1.4 another variant of the racing competition is presented, where cy-
clists overran each other many times and the first was the winner.

It is not difficult to see that the above description through the angles ¢, and

@, will not allow, until one of them is equal to 277, to uniquely predict an out-

come of the cyclist racing, though a skilful specialist could express more or less
likely estimates.
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2r

2

Fig. 1.4. Another race of the cyclists on the (¢ |, @, ) - plane.

Let us consider one more example pertaining to describing a disease through a
plot of a patient’s temperature (figure 1.5). An experienced doctor will find in this
plot a lot of information concerning the flow of the disease, though the initial
fragment of the plot is insufficient for a trustworthy prediction of the entire curve
or a final stage of the disease only.

The next example is a free vertical falling of a solid body at height /, above

the earth and having vertical velocity v, . Under the gravitational law, we get

tz
h=h, +v0t+%— ,

where / is the time of the fall, and /4 is the position counted down along the ver-
tical line. The admissible types of the plots for A(f) are presented in figure 1.6.
These plots show how the solid is falling when it has been thrown up, simply
dropped or thrown down from height 4, . Therefore, the magnitude / describes
the fall of the solid well. Is it possible through a single % to predict a further fall
of the solid body? Evidently not, since the magnitude h(t ) must be known as

well.

Having this in mind, let us take two plots for A(¢) and h(t) (figure 1.7) as a

description. With values of /(f) and A(t ) =V known at any instant /, it be-

comes possible to predict their values at any subsequent instant 7 > { with use
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A
Y

Fig. 1.5. The plot of morning and evening temperatures of the patient.

hy ¢

Fig. 1.6. The plots of the body falling from the same height but at different initial veloci-
ties.

of the below formulae

h(f)=h(t)+v(t)(t_—t)+%g(t_—t)2
(1.1)
h(t)=h(t)+g(i—t) ,

being familiar to you from school physics.
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h,v h

L B

Fig. 1.7. The time plots of the height /4 and the velocity V for the body thrown vertically
up.

Instead of two plots A(f) and h(t ), we can take only a single curve being

travelled with the time / in the plane /,v by the point M with coordinates A
and v

h=h(t), v=h@).

Equations for this curve may be derived in the following way.
From the obvious expressions

v=h,v=g, (1.2)

implying that a velocity is a time derivative of the displacement and that the accel-
eration due to gravity is equal to g, it will follow that

dh v

& g

or
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where C is an arbitrary constant.
Hence, the trajectories circumscribed by the point M (/4,v) on the plane / ,

v for various C are of the form shown in figure 1.8.

Iy
\

Fig. 1.8. The phase portrait of the body fall.

When time increases, the point M will run along these curves in the directions
indicated by arrows (it follows from the fact that for v > 0 the magnitude % in-
creases and for v < 0, decreases). The description of a falling solid via two mag-
nitudes /# and Vv, adopted by us, possesses a wonderful property of self-
sufficiency and enables to produce a unique prediction. Indeed, setting any / and
v will define uniquely a single parabola with the point M (A, V) on it. In this
way, a further evolution of magnitudes /4 and v is defined uniquely.

The plane of the variables 4, v has a special name, a phase plane. Accord-
ingly, the variables /2 and v are called phase variables, and the trajectories being
drawn by the points A (A, V) on this phase plane will be called phase trajectories.

The motion of the phase point along trajectories is remarkable by the fact that
knowledge of its position at any instant ! makes it possible to find its position to

which it will have moved at any subsequent instant ¢ > ¢, and namely, according
to (1.1) or (1.2),

Wi)=vt)+g-(i—t) ,

h(F) = h(t) + ()T —1) + % g(f —1)?.
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This property of self-sufficiency of the variables 4 and Vv, implying that in order

to determine their values upon any time interval Af it is enough to know their
values at an initial moment, makes them especially important. Due to this, such a
description was called a state, and the variables describing this state were called
phase variables. This very property of the state was used as a basis for defining a
mathematical model being called a dynamical system. This model describes the
determinative evolutionary processes and is one of the most essential, if not the
most essential, in contemporary natural sciences and engineering.

Let us look once more at the description of the cycling competition on the plane
@, and @, and that of a freely falling body on the plane h, v.In the first case,
descriptions of different racing heats are represented by all possible curves within

the square 0<¢, <27, 0<¢@, <2x. Naturally we assume only that

@, and @, are nondecreasing functions of time. Through each point of this
square may pass across any number of curves. It is due to this very fact that setting
the values @, and ¢, at some instant of time will not determine a further run-
ning of the curve passing through this point. On the contrary, on the plane A, v

the curves depicting different cases of falling will not intersect each other. It is due
to their inability to intersect, and due to each point being intersected by its unique

curve, that a unique prediction of further changes of magnitudes /# and Vv be-
comes possible.
Thus, description by the variables ¢,, @, does not provide a unique predic-

tion and this very fact is reflected in that that each point (¢, , ¢, ) may be passed
by some curves. On the other hand, describing a free falling object through the
variables 2 and v will produce a determinism, because each point (/,V) is in-
tersected with a single curve only. The given mathematical description for a solid
freely falling in a gravity field constitutes an example of a mathematical model
called a dynamical system, whereas a mathematical description of the competing

cyclists through the angles @, and @, does not.

Now let us give a general abstract definition of a mathematical model, called a
dynamical system, with use of geometrical interpretation suggested by the great
mathematician Jules H. Poincaré,

A dynamical system is defined by the space X and the single-valued operator
T(At), depending upon the parameter Af = 0 in such a way that to each point

X € X the operator T puts into correspondence the point X ,ie. X =T(At)x.
Here the operator 7'(At) is supposed to satisfy, for any admissible Af; > 0 and
Ar, 2 0, the expression

T(At,)T(At,)=T(At, +At, ).
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The notional matter of the space X and the operator T'(Af) is as follows. X is
a space of all possible states of the system under study. Usually X is a multidi-
mentional vector with the components X, X, ,..., X, . The description X is called
a state or a phase point, and a space of states X is called a phase space. For the
given state X at an initial moment, the operator 7'(Af) determines the state X at
the time Af . Here it is clear that a transference from the state X to X , being exe-
cuted first during the time Af; >0 and then during the time Af, > 0, should be

the same as that performed during the time A#, + Af, . This is the meaning of the

above requirements assigned to the operator 7'(Af).
The description X is remarkable in the sense that by knowing it at the present

time, one can determine such a description upon any time Af > 0 . It is because of
this that it is called a state, and the point X a phase point.

The above discussed example concerning a freely falling body is completely
appropriate to the definition given. The state X here is a two-dimensional vector

with the components # and V. A space of states or a phase space is a two-
dimensional plane of variables /2 and v. The height A and the velocity v vary
during the time Af and, according to the above, their new values will be equal to

h and vV, where
— 1 ) _
h=h+vAt+§g(At) , V=v+gAt . (1.3)

These last formulac determine the operator 7'(Af). It may be immediately

checked that this operator 7(At) meets the requirement imposed by the defini-
tion of a dynamical system.

From the relations determining a change of variables /4 and v for Af, it fol-
lows that

\7—v_ ———;l__h—v+l At
At £ At 2g '

As At — 0, we find that the functions A(f) and v(f) satisfy the differential

equations

a_, v
dt | a
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This conclusion also takes place in a common case if the limit

jim T(B)=T(0) _
At—0 At

is supposed to exist. Then the state X as a function of the time 7 satisfies the dif-
ferential equation

Indeed, let us write the expression
¥ =T(AD)x
in the form
xX(t + At) = T(ADx(t)
and further in the form

xX(t+ A= x(1) _ T(ADX(0) - x(1)
At - At ’

or, taking into account
x(t) =T(0)x(r)

and passing to the limit as Af —> 0, we conclude that

dx(t) _ . T(AD-T(0)

dt A0 At

x(t) = Lx(t)

as had to be proved.

Thus, a change of the state of a dynamical system will satisfy some system of
first-order differential equations that, for the components of the vector X, can be
written as
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—L =1 (x,Xy50X,)

dat

dx,
dt

=1 (x,%y,...,%,) .

On the contrary, integrating these equations enables us to find the state-
transferring operator 7'(At) . Here, these equations are certainly assumed to be

uniquely solvable, and then their solution X,(¥) (i =1,2,...,n) at any instant
t>1t, is defined by the initial conditions, ie. by the values Xx,(%,)

(i=1,2,...,n). In this way, the assignment of the differential equations, that are

satisfied by the state as a function of the time /, determines a dynamical system
operator. The opposite takes place only in the case of differentiability of the dy-
namical system operator, and this may be often not the case. Therefore, the above
definition for a dynamical system is somewhat more general than in the case when
changes of a dynamical system state are supposed to be subject to some differen-

tial equations. Note also that the operator T(Af) can be defined not for all

At 2 0, but only for some set of values Af > 0.

A central and visual geometrical image of a dynamical system is its phase por-
trait depicting all possible motions, i.e. all possible time evolutions of its states
(descriptions).

A knowledge about a phase portrait gives a full representation of the dynami-
cals (possible changes) for the dynamical system; it is a portrait of its dynamics.

We already encountered a phase portrait in the two-dimensional plane /4, v
when describing the fall of a body. Each separate fall was depicted on this plane
by the parabola

2
h=a+tC .
2g

The set of all possible falls is described by parabolas for various values of C'.
This has led to figure 1.8. Separate curves of this phase portrait are called phase
trajectories, and an entire set of possible phase trajectories constitutes a phase
portrait.

On the basis of this obvious example it is not difficult to give general defini-
tions for a phase trajectory and a phase portrait and reveal the most essential prop-
erty of phase trajectories, viz. the fact that they cannot bifurcate, i.e. from a phase
point there can necessarily come out no more than a single phase trajectory.
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Indeed, let X be an arbitrary point of the phase space X . During the time Af
the point will displace to the point X . With Af changing from O to o0, the point
X will circumscribe some “curve” coming out from the point X . This is the very
phase trajectory coming out from the phase point x . This phase trajectory is sin-
gle, because of the uniqueness of the operator 7'(Af) . A combination of all phase
trajectories makes up a phase portrait.

Let us illustrate the notion of a phase portrait on the examples describing a
sledge riding. Here, where we shall observe the two types of profiles, a pit with an
ever ascending edges and a pit on a horizontal surface. The profiles are given in

figures 1.9a and 1.9b. The sledges are taken symmetrical and sliding without fric-
tion, both forward and backward.

¢ ¢

a b
Fig. 1.9. The two types of skiing profiles, a and b.

The description has to be chosen in such a way as to have it as a state. With the
help of the experience already gained in the example about a free fall, it is now
natural for us to choose the position § and the velocity v of the sledge as a de-
scription. The variable § is chosen along the horizontal line, and the deepest place
of the pit is taken as the origin of the count. The velocity of the sledge along the
terrain profile will be chosen as the velocity v. No formulae and equations will be
written. Without their help, let us think about what form the phase portrait will
have, i.e. what phase trajectories in the plane §, v will be. In the case of the pit
with ever ascending edges, any motion of the sledge will be represented either by
the motionless position of the sledge in the bottom of the pit or by a periodic
driving from one slope to another. The associated phase portrait is depicted in fig-
ure 1.10 a. This portrait includes oval, closed, nested phase trajectories.
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) s
o

D

q b

Fig. 1.10. The phase portraits of skier’s movements corresponding to the profile in figure
1.9a, a (without friction) and b (with friction accounted).

Inside them, there lies the phase trajectory represented by the single point § =0,
v =0 corresponding to the equal position of the sledge on the bottom of the pit.

The points A, B,C and D on the phase trajectory Z respectively indicate the
subsequent positions held by the sledges, i.e. in the extreme left top position, on
the bottom of the pit, in the extreme right top position, again on the bottom of the
pit, and, at last, again in the extreme left top position. Such motion is periodically
repeated with no limit.

The second case of the phase portrait depicts a more complicated situation,
since along the horizontal parts the sledge moves with a constant velocity and
each of the points in horizontal parts for v =0 is an equilibrium state. This fact
results in a phase portrait given in figure 1.11a.

Let us ponder over how the phase portraits in figures 1.10a and 1.11a will
change, if ever existing friction is also accounted. In this case, the oscillations in-
side the pit will dissipate always and will convert to the equilibrium on the bottom
of the pit. The motion along the horizontal part will dissipate as well. If all this
taken into consideration, then the phase portraits in figures 1.10a and 1.11a will
assume the forms shown in figures 1.10b and 1.11b.

Now I think you are already ready to find a rather complicated phase portrait
for a plane pendulum. Here again, we will not resort to equations and formulae,
and, instead, will try to outguess its form. Later on, in the proper place, we shall
give you the formulae and specify this portrait quantitatively; right now we will
restrict ourselves to its qualitative shape only. It is, perhaps, most difficult to un-
derstand what a phase space of the pendulum is. If the angle of the pendulum de-
viation from the horizontal line is ¢, then a state will be a collection of this angle

@ _and the angular velocity @ = @ _of the pendulum rotation. A phase space will
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a b

Fig. 1.11. The phase portraits of skier’s movements corresponding to the profile in figure
1.9b , a (without friction) and b (with friction taken into account).

be the space whose points are all possible points M (@, @) . The angle @ varies
from — 7 to 77, the values ¢) = —7 and @ = 7 describing the same position of
the pendulum. Therefore, the infinite band —Z7 <@ <7, —0 <@ <0 will
serve as a phase space. Besides, the points @ =—7, @ and @ =7 , @ will

indicate the same pendulum state. Thus, in the phase space they should be repre-
sented by a single phase point only, and not by two. Here, it is possible to adopt
the simple convention — the points (— 7, @) and (7, @) constitute the same

point. Also, their real merging is possible, by sticking down the band along

K, @)
L

Fig. 1.12. A phase cylinder

the lines @ = —7 and @ = 7 into a cylinder. It should be certainly done in such

a way as to have the points of equal @ stuck together. This will yield a two-
dimensional,cylinderassa;pendulumyphase space. The cylinder is shown in figure



20 1 Dynamical systems

1.12. Upon cutting it along the line ¢ =+ we come to the band (Fig. 1.13) with
identified sides.

VA

Fig. 1.13. The development of the cylinder on a plane.

To draw phase trajectories just upon the cylinder is not comfortable. Therefore, we
will do it on the band remembering always that this is a cut out cylinder expanded
on the plane.

The pendulum has two equilibrium states, a bottom stable equilibrium corre-

sponding to the point @ =0, @ =0 and a top unstable one corresponding to the
point @ =tz , @ =0. Each of these points is a whole phase trajectory, its be-
ginning, its end and it itself are entirely held in a single point.

If a motionlessly hanging pendulum, represented by the equilibrium @ =0,

@ =0, is pushed slightly, then it will start swinging with a small amplitude about
this equilibrium state. Such a motion will be represented through the small oval
embracing the point of the bottom equilibrium. With the push increased, the pen-
dulum will swing with a larger and larger span (an amplitude), and at last its os-
cillations will turn to a rotating motion, either clockwise or counterclockwise. The

said is depicted in figure 14a. In this phase portrait: ko is a bottom stable equilib-
rium; K, is a top unstable equilibrium; k,,k,,k; are periodic oscillating mo-
tions about the bottom equilibrium; B,, B,, B, are quicker and quicker rotating

counterclockwise motions; §1 R §2 , B, are quickening clockwise rotations; (the
pendulum deviation angle @ is counted counterclockwise from the low position
of the pendulum); P, and P, are the motions coming close to the point K, at

t —> 00 and ¢ —> —00 . These two last phase trajectories, P, and P, , separate the
oscillating and rotating motions.
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In this initial stage, you will be supposed to possess some knowledge about a
phase portrait, if you feel now capable of drawing, without peeping into figure
1.14b, how the portrait in figure 1.14a will be changed, if dissipations appear, say,
caused by air friction. Then, you will have to explain also what motions are

N

|
Rl

Fig. 1.14. Phase portraits of the pendulum : a with no friction ; b with friction.

represented by its separate phase trajectories.

All the mathematical models to further appear in our text and to be studied are
nothing but the specifications and the particular cases of the same more general
mathematical model of the dynamical system described above. Also, so much they
will be unlike each other, so much they will differ both by the nature of processes
running in them and by their physical nature! Any process, phenomenon or system
of any nature being described by differential equations is a dynamical system.
Therefore, the great laws of nature — the laws of mechanical motion of solid bod-
ies, fluids, elastic media, the theory of electromagnetic field, the laws of electro-
dynamics and quantum physics — are described by mathematical models repre-
senting themselves the dynamical systems. Though, our further narration will be
started not from them. Instead, first we shall consider and study very simple mod-
els, and only upon this you will be suggested more complicated models, which
retain, nevertheless, their specificity and simplicity. In spite of their simplicity,
sooner, thanks to their simplicity, they are most admissible for training and con-
tribute torthe:mostiextentitoryour gainingithe general and intuitive comprehension.
The specific examples to be suggested to| you are supposed to ensure your many-
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sided understanding. Sometimes, very simple mathematical models will be sug-
gested for simple physical systems, and, sometimes, simple models for very com-
plicated systems. Though, even in very complicated cases these models will re-
main simple demonstrating their significance and cognitive power.

As it was noted above, each system or process described by differential equa-
tions always represents itself a dynamical system. This follows from the theorem
of existence and uniqueness of the solution for the differential equations with the
given initial conditions. Its state is a collection of the initial conditions which
uniquely determine the solution. Its operator is determined by its solution within
the time interval Af .

Alongside with it, [ would not wish you to think that the above general defini-
tion of a dynamical system is nothing but simply another treatment of differential
equations. In order to eliminate such a thinking, I will give you an example where
this definition is easily seen to be far from the differential equations. These equa-
tions here have nothing to do with it. This example is the game “Life” by J.
Conway.

In this game played on a chess board, a state is defined through the position of
counters. A space of states will be a set of all possible positions of counters. A
state may be set up by the 8 x 8 matrix whose elements are units and zeroes, de-
pending upon whether there is or there is no counter on the associated square. A
phase space consists of all possible matrices of the above type. At each time
At =1, the positions of counters are changed by the operator being defined by
the below three rules — survival, death and birth. These rules are as follows:

1) a counter retains, if nearby there are two or three other counters;

2) a counter is removed, if nearby there are more than three or less than two
counters;

3) a free square is occupied with a new counter, if there are three counters
nearby.

There are many possible changes in the positions of counters depending upon
their initial position. For example, the below three counters of the configuration

. —> o | » —»  No counters

turn, as shown, first, into two counters and then vanish. The square-shaped con-
figuration of four counters
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will lead to no changes.
Three counters aligned

will oscillate, as shown, with a two-time period.
Five counters, forming a “glider”-like configuration, are repeated each four
times, shifting one square to the right and down.

There exist such positions of counters which through oscillating each period
will generate a “glider”.

Also, there are the positions of counters which will "devour" gliders, and so on.

This variety of possibilities, imitating in a distant and simplified way the real
life generated via combining chemical molecules, will be represented, as said al-
ready before, by the dynamical system whose state X is a matrix of zeroes and
units. The matrix will hold so many rows and columns, so many they are on the

playing board used for the game. The entry @, of this matrix is equal to 1 or 0,

depending upon whether there is or there is no counter on the intersection of the
I-th row and j -th column. A set of all possible such matrices with 1- and 0- en-
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tries will constitute its state space. The operator T (Af) of this dynamical system

will be determined only for discrete values of Af equal to 0, 1, 2,
If 7 is an integer, then

Tm)=T"(1);
T'(0) will be the operator which does not change the counter positions.
Before finishing our narration on a mathematical model of the dynamical sys-

tem and its phase portrait, let us find a phase portrait for the physical pendulum
mounted on a rotating base (figure 1.15).

10

Fig. 1.15. The phase pendulum on a rotating base.

For the case of the pendulum base being fixed, we have already found a phase
portrait of the pendulum without writing out the equations of its motions, since the
pendulum is well familiar for us and the differential equations of its motions are
not thus needed. As for the case with the pendulum on a rotating base, to treat it in
the same way is impossible, for the dynamics of this pendulum is a mystery for us
and one may unvail this mystery only through studying its mathematical model.
This is the very thing we are doing right now. For this, some information from
mechanics will be needed for us. Take it on trust.

The state of the pendulum with a base rotating around a vertical axis at the an-
gular velocity €2, as well as that of the fixed-base pendulum, will be expressed by
the angle of its deviation from the vertical line @ and by its angular velocity

@ = ¢ . We need to derive the differential equations of its motions. Here, theo-
retical-mechaniesscansbe-of helpsfor-us=lts prescription looks like this: find the
kinetic energy I' and the potential energy /' of the pendulum and compile the
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Lagrange function L expressing it through the state variables @ and @ ; upon it,

the motion equations will be written in such a beautiful form as

d(oLy L _
dt° o’ dp

Upon the computations, being still not clear for you at present, we find the func-
tion L of the form

L = g(a)z +Q?%sin? ¢)+%Q2 cos’ p+ Mglcosg ,

where A and C are inertia moments of the pendulum, and L and M are its
length and mass.

The elementary differentiations will yield the wanted second-order differential
equation

Ap+ Q*sin2¢ + Mglsing =0 . (1.4)

Take it on trust how this equation is derived. One needs only to understand this
equation, i.e. to see that for {2 = 0 it is transferred to the equations for the usual
physical pendulum on a fixed base. Also, one should have an idea concerning the
physical sense of the inertia moments 4 and C' . The pendulum looks like a solid
rotating with respect to its suspension line (the line connecting a suspension point
with a mass centre). Its centre of gravity is at the distance / from the suspension
axis; the pendulum itself is of the mass M . C is an inertia moment with respect
to its suspension line, and A is a moment of its inertia with respect to its axis
being perpendicular to the suspension line and coming through the suspension
point. For the solid being stretched along the suspension axis, we have C' < 4. A
reverse situation takes place for the disk-like pendulum whose radius is suffi-

ciently longer than the pendulum length.
To solve the equation (1.4) with use of elementary functions is impossible.

Though, it is possible to integrate it once. For this, multiply it by ¢ and perform

the below calculations:

App + O? sin 2@ + Mgl sin p@ =

2%(§¢2 ——C—;££220052¢—Mglc05(0):0 ,
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from which we find that

ggi)z ——;—492 cos2¢p—Mglcosp=h

where /1 is an integration constant.

From the integral derived we find that

f§¢:i\/h+C;AQ2 cos2¢ + Mgl cos ¢ (1.5)

This is the very equation of phase trajectories in the cylindrical phase space of the
state variable @ and @ = @. These phase trajectories have to be constructed, for
each /1 there should be found its own phase trajectory. Though, for you it will be
not so easy. Therefore, with the help of the equation (1.5) let us, first, create the

already known phase portrait of the pendulum on a fixed base (€2 = 0). In this
more simple, case we obtain

—4¢=i1/h+Mglcos¢ (1.6)

2

Assuming the subradical expression to be the function @ ., let us construct a

plot for the constant /2 and the plot for the function Mgl cos ¢ (figure 1.16).
The first plot will be the straight line being parallel to the axis @, at the dis-
tance A from it, and the second will be the single period of the sinusoid of the
amplitude Mgl . In figure 1.16, arrows indicate the values of the subradical func-
tion for various @ . With the length of this arrow indicated as 0 (with its direc-

tion considered), the phase trajectory equation (1.16) will be written in a very
simple form

=1+ 2—/’1'1 (1.7)

For the value of /2 given in figure 1.16 , the possible values of ¢ will lie be-
tween ¢, and — ¢, (outside of them we have p <0; and ¢ is imaginary).

With @ changing from — @, to @, , we easily find, from figure 1.16, the form
of the corresponding phase trajectory. It will be an oval drawn below the plots
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used by us in the plane @, @ (to be more exact, within the band
~ZT <@ <7 ,~0<@<o). Through changing / from — Mgl to o, let

us find all phase trajectories. This phase portrait is already familiar for us and once
more drawn in figure 1.16.
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Fig. 1.16. Constructing the phase portrait of the pendulum on a rotating base at {2 =0 .

To pendulum oscillations there will correspond — Mgl < h < Mgl , to the low
stable equilibrium there will correspond —/ =—~Mgl; to the upper unstable

equilibrium there will correspond — 4 = Mgl ; and to the rotations, — 4 > Mgl .
Now, let us similarly construct a more complicated phase portrait appropriate to
the equation (1.5) for € # 0.

For

(C-4)Q* > 4Mgl

figure 1.16 will be changed and take the form of figure 1.17.
Here, the plot

- Mgl cos¢—£;—AQ2 cos2¢@
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is drawn and the line corresponding to the value 4 is depicted. As earlier, the
values of p( @) are shown with arrows and the phase trajectory is described by
the equation (1.7). By changing %, we, with some patience, shall find the phase

Fig. 1.17. Constructing the phase portrait of the pendulum on a rotating base at {2 # 0.

portrait suggested in figure 1.17. This phase portrait exhibits exceptionally won-
derful properties of the pendulum, viz. its ability to stably hang both up and down.
This wonderful ability has appeared due to the above assumption that

(C—-A)Q* > aMgl

ie. when C > A and the rotating velocity (2 of the pendulum base is suffi-
ciently large. It may be similarly revealed that for C < A an increase of the ro-

tating velocity {2 will retain the instability of the upper position, and will make
the lower equilibrium position unstable as well.



2 Fluid outflow from a vessel

The Torrichelli law and a simplest model of the fluid outflow. Compression
of the outflowing water jet. Insufficiency of a simplest model and im-
provements with the account of the fluid outflow speedup. The phase
portrait for a fast speedup and a slow outflow.

Let us consider a very simple phenomenon of a fluid outflow from a cylindrical
vessel with a small hole in its bottom (Fig. 2.1).

Fig. 2.1. The cylindrical vessel with a hole in its bottom for a fluid outflow.

Let S be a sectional area of the vessel; & a square of the hole; H is a height
of the fluid level. How will the fluid level height H be changed, if the fluid is
flowing out and the initial value of the level is equal to H = H;? In order to
answer this question, it is sufficient to know the velocity Vv of the outflow
through the hole. Indeed, the fluid effluence during the time interval df will be

equal 'to "ovdi ", and, hence, the Velocity of the fluid level sinking in the vessel
will be equal to



30 2 Fluid outflow from a vessel

With v known, the above expression will be a differential equation from which
H can be found as a function of 7, ie. H(t). The first who outguessed three
centuries ago the value of v was Torricelli. He said: "Water will flow out with

the same velocity as if it would have dropped from the height H ”. You see that
from above water is vanishing, and from below it is flowing out, as if it had been

dropped from the height H . A solid body dropped from the height H will gain
the velocity

v=42gH .

This is the Torricelli formula famous in his time. It is impossible not to admit a
wit of Torricelli’s considerations. However, you see that from above one water is
being dropped and another water is flowing out through the hole. Here, not eve-
rything is clear; though, the formula is true as it was proved experimentally. If
we have trust to this formula, let us then come to the differential equation

H =—%,/2gH, @.1)

from which it follows that
dH o
-2 gt
vH S
and, hence,

~24JH = —%Jth +C,

where C is an unknown constant.
From the initial conditions

we find that
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c--2/F,

and, finally,
H=(JH, —%1%1)2. (2.2)

Now, a decrease of H may be shown diagrammatically (Fig. 2.2) and we find
the time of a complete outflow

S |2H,
fp==—2. 2.3)
o\ g

H,

Fig. 2.2. The time graph for the changes of the water level during the outflow .

From the plot it is seen that, at first , water is flowing out faster, then its velocity

is slowing down to zero and this occurs during the time 7 7 being proportional to

a square root of the initial water height H .

How much do these conclusions coincide with the experiment? The Torricelli
formula is confirmed in practice. Indeed, in all cases water flows out with the
same velocity as if it was dropped freely from the top water level. Though, the

outflowing time ¢ IR calculated by the formula (2.3), turns out to be approxi-

mately two times less. Accordingly, two times less than the calculated velocity
will be the velocity of the sinking level H in the vessel. Why does such a large
discrepancy appear, whereas the velocity v of water outflow through the hole

was determined correctly? This discrepancy may appear only due to the incor-
rectness of the formula
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F=-Zy
S

which means that how much water has flowed out and so much of it has become
lower in the vessel. Why may this formula be incorrect? Let us formulate its exact

sense — the ratio of velocities v/ H  is equal to the ratio of the cylinder section
to the section of the outflowing jet. We assumed, without thinking over, the jet
section to coincide with the size of the hole; but , to be more exact, this is abso-
lutely not so. In reality, the water jet section will be smaller than that of the hole,
since this the water approaching the hole from different directions will compress
the jet, and, therefore, the jet section will be less than that of the hole. This
compression of the water jet may be eliminated, if the hole is supplied with a
gradually converging funnel. A complicated hydrodynamic calculation con-
firmed experimentally shows that the compression coefficient of the water jet
flowing out through a hole in a horizontal bottom is approximately equal to 2 .
The fluid outflow mathematical model constructed by us is a dynamical sys-
tem. Its phase space will be the half-line / = 0. Its single phase trajectory repre-

sents this half-line being travelled from H = to H =0 (Fig. 2.3).

=0 H
iif

Fig. 2.3. Constructing an one-dimensional phase portrait for the fluid outflow.

A vessel with a water outflow was used in ancients times for time countdown.
This device is a so-called “water clock”, clepsydrae. If you choose S, o and

H so that ¢ 7 is equal to 24 hours, then, upon filling up the vessel with water,

one can determine time during the subsequent days through the level H . In
order to mark the levels corresponding to different hours of the day, the section
of the axis 7 (Fig. 2.2) must be divided into 24 equal parts and, according to the
plot, the appropriate H ’s may be then found. It is not difficult to see that the
resulting time scale marked through water levels will be non-uniform, i.e. at
first, one-hour gap of time r will correspond to a large sinking of water, and fur-
ther, will correspond to a smaller and smaller sinking. Let us think how the water
clock must be modified in order to make its scale more handy, i.e. uniform.
Look at the formula (2.1) again : the scale will be uniform, if, irrespective of H ,
equal dH ’s will be assigned equal df ’s, i.c. it is necessary to do so that
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o
—.J2gH = const.
< g

At first sight this seems impossible, but, upon some thinking , one can realize
that it is sufficient to have the cylindrical vessel (with § constant and inde-
pendent of H ) replaced by the vessel with

Sza«/ﬁ.

What is the form of such a vessel? Let it have the form of a revolving body;
then its horizontal section at the height H will be a circle of the radius # and of

the square § = . Consequently, we get

w =avH

or

H=E)r,
a

which corresponds to the form of the vessel shown in figure 2.4, the form similar
to a mess-tin.

H

T

Fig. 2.4. The shape of the vessel from which water is flowing out with the level
decreasing at a constant velocity.

Thus, the problem has been solved, the outflow law has been found and can
be utilized for constructing a water clock with a convenient uniform scale. Al-
though, at present nobody needs it.

The problem of water outflow__is_solved on the basis of the Torricelli law,
whose conclusion is somewhat vague. Let us try to make it clear. For this, let us
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resort to something that was not known by Torricelli, to the energy conservation
law. When water is floating out and its level is sinking, the potential energy of its
thin layer of the mass dm is converted into the kinetic energy of the effluent wa-
ter in such a way that

2

dmgH = dm %

or

v=.2gH .

This is just exactly the Torricelli formula. So, everything is proved.

However, let us test in practice the above result (2.2), i.e. let us see what it
will yield for o = §, when water is not flowing out but is merely falling down
from a bottomless cylinder. As it is falling freely, then it is obvious that

2
H=Ho—% .

This is not consistent with the Torricelli law accepted by us. For comparison,
both plots for H(¢) are given in figure 2.5 . The first of them corresponds to

the Torricelli law for o = §, the second to a free fall of water. They are not co-
incident, though in both cases water is flowing out from the vessel during the

similar time a

H

Fig. 2.5. The time graphs 1 and 2 show the times of water outflow from a bot-
tomless cylinder (equation (2.1)) and the free-fall law, respectively.

Whatis then the matter here? " Whereis an error? Is the Torricelli law not true?
To doubt the law for a falling solid is difficult. Let us see where lies the differ-
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ence between the plots 1 and 2 in figure 2.5. According to the plot 1, water, is , at
first, flowing out rapidly; then its outflowing velocity is slowing down. Ac-
cording to the plot 2, it behaves conversely, i.e. at first it is running slowly and
then faster and faster. With a hole as large as the vessel itself, the second case
seems more truthful. Where is then an error? Perhaps, the energy conservation
law is invalid? It is hardly believed. May be the law has been applied incorrectly?
Yes, it seems applied incorrectly. But in what place? You see that here every-
thing is so simple and clear. Let us return to the main assumption: energy is con-
served (friction of water can be neglected); therefore, the potential energy of the
top layer is converted to the kinetic energy of the effluent fluid. But this is really
true, though, only approximately, for o << § only. Indeed, the top layer of the
fluid is also sinking and gets some kinetic energy. Thus, it would be better to
write as below

T2 -2
dmgH+dm—H—=dmv— .
2 2

Accordingly, inview of ov = —SH , we have

(2.4)

For o << §, this new formula turns into the Torricelli one. Hence, the
needed improvement has been found. Though, we should not be in a hurry.

Again, let us assume that 0 = §; then, the result will be worse, H = 0.
There is an error here again. Let us return to our initial consideration and assume
that we have atonce ¢ =8 . When water is falling down its potential en-

ergy, being actually equal to dmgH , converts into the kinetic energy but not

only of the effluent fluid (escaping from the vessel), but also of the sinking fluid
left inside the vessel, more precisely, into the increment of its kinetic energy, be-
cause the motion is accelerated. Thus, the error lies in the fact that the increment
of the kinetic energy of the sinking fluid in the vessel should be additionally ac-

counted as well. For o << §', this increment will be actually small; though, for

O being congruent to S, this increment will be absolutely not so. Let us again
return to the initial consideration and insert necessary improvements.
Thus, let V' be the potential energy of the fluid in the vessel, 7" be its kinetic

energy, 1, the kinetic energy of the fluid escaped from the vessel during the

time dt... Then,under. the energy conservation law, we have



36 2 Fluid outflow from a vessel

d
—(T+V)+T, =0.
ST+

The expression for 7| is already known for us. It is as follows

2 2

\Y . %
T =dm— =-pSHdt —,
1 5 8. >

where 0 is a cubic density of the fluid. The potential energy may be calculated

as follows

H 2
V = [gHdm = [pSHgdH = ﬁgfi.
0

Then, the kinetic energy is equal to
2
u
T= I— dm
2

where integrating is done over all volume of the fluid in the vessel and # is a

current velocity of the mass element dm of this volume. The velocities # in the
different points of the vessel are different and calculating them means to find how
the fluid is flowing out from the vessel. This is very difficult to do. What to do

then? How it should be done is clear for the two extreme cases, i.e. for 0 << S,
when an magnitude of the order u’ may be neglected, and for & =S, when

u=H . The last approximation is also applied to the case when H >> r, where
¥ is a radius of the cylindrical vessel filled with fluid. Let us consider this case;
then

T2
T=,0SHH7.

After that, the energy conservation law, according to the above, will be of the
form

T2 2 T2
Lps L 28 Lsp 2

Y =—=0
dt 2 2 o 2
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or
T3

T3
pS%—+pSHHH—pS(S)2HT+pgSHH =0,

(o2
from which
. 1 S, . H?
H=-——{gH —[(—) -1]— 2.5
H{g [(J) ] 2} (2.5)

As was expected, the differential equation derived now is of the second order
and for 0= § it is checked successfully, since from (2.5) it follows from this
examination that

ji=—g .

This is just what was required.
Now, it remains to be understood how for & << § the earlier derived equa-

tion, based on the Torricelli law or its improvement, follows the equation (2.5). To
reveal this is not easy. To make our considerations easier, let us introduce

u =—H and write the equation under study in the form

= e 1Sy 2% = .
=g =)' 115 = f@w); 2.6)

and see how u will vary. When f(u) < 0, the velocity of # will decrease and,

for f(u) > 0, conversely , it will increase, i.e. there will exist some value

u = \/2gH[<—(S;>2 ES

such that for u <u  u will increase and for u > u ' it will decrease. As a re-

sult, # will turn out to be close to u" . For visibility purposes, let us depict the
semiaxis # = 0 and draw the plot of f(#) as a function in % . In accordance

with the plot, u varies as shown in figure 2.6. For S/ o >>1, u will ap-
proach u " fast. Note that when u is approaching u *, the point u displaces

slightly, but its displacement occurs much slower than # approaches u , since
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o 1 ou 2g
u = :—5? ——T (27)
H[l-(—=)*
[ (S) ]
As a result, we have approximately
g
u=—2gH . 2.8
R &g (2.8)

This will be the more precisely, the smaller /.S is, that completely coincides
with the above formulae (2.1) and (2.4).

Fig. 2.6. The phase portrait for the differential equation (2.6) at [{ = const .

What are the conclusions from the fact that the equation

H :—%,IZgH

was replaced by the equation
- 1 S, ..H?
H=——/{gH-[(—) -1]—/3}.
7 {g [(O_) 1= }

First of all, at the initial moment ¢ = 0 we have now H =0. Then, H is fast

approaching the value determined by the first equation and further H is vary-
ing in accordance with this equation. The said is depicted in figure 2.7, where the

firm line depicts H fluctuating in accordance with the first equation and the
dotted line, with the second equation. The part of the plot corresponding to the

intervalyfromyty=,0ytoplzmdescribesythe acceleration of the outflowing jet, and
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the remaining segment, from 7, to ¢ - to the lengthy outflow with a progres-

sive slowdown.

|
! i
I
I
|

tﬂ'ﬂ‘ tjl

Fig. 2.7. The time graph of the water level fall upon opening the hole: without
firm line) and with the of speedup phase taken into account.

In order to correctly depict the velocity fluctuations , one should determine the

acceleration time f__, whereas the outflowing time is already known to be as

ac?

S [2H,

t .
7 o g

After the acceleration, the outflowing velocity reaches the value /2gH ; be-

sides , as follows from (2.6), the acceleration velocity V, at least in the begin-
ning, will be equal to

v=—g.
o

Therefore, the acceleration time, by the order of values, will be approximately

equal to
; _Z 2H,
ac S g :

Hence, we approximately have
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o
to Ity = (S)2

In particular, if the ratio of the cylindrical vessel radius to the radius of the

bottom hole is equal to 100, then the acceleration time will be approximately 10®
times less than the outflowing time, i.e. if the outflowing time is about an hour,
then the acceleration time will be 0.0001 second. Even with the hole being rela-
tively large, when the ratio of radii is about 10, the ratio of times will be of the

order 10*. Thus, for o/ S <<1 the acceleration will occur actually instantly
and the further outflow will meet the Torricelli law. Here, the brief story about
the water outflow from the vessel with a hole in its bottom could be finished.
But I would like also to show you how the notion of a phase portrait can be util-
ized by you for studying the motions of the improved model (2.5).

Let us write its differential equations in the variables of the fluid level H and
of the outflowing velocity V. A collection of these variables will constitute a
state, and, according to the above, its changes will satisfy the below differential
equations

H=—=v, =—{g——[ S 7y ]——} (2.9)

As /8§ — 0, these differential equations will assume the form

o for y2 <2gH
H=0, v=0 for v2=20H (2.10)
- for y? >2gH

according to which the phase portrait consists of the vertical phase trajectories
along which the phase points are moving, at the infinitely large velocity, to the
curve of the equilibrium states (Fig. 2.8). For o/ <<1, i.e. when it is very
small, the instantaneous motions will turn to the fast ones slowing down as they

are approaching the curve v = 2gH ; simultaneously, each of these phase

points, including the former equilibrium states, will be moving to the left at a very
small velocity. As a result of this, the phase portrait will be changed and will
take the form shownin figure 2.9.
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o

=2gH

H

Fig. 2.8. The phase portrait for the limiting differential equation (2.10). The
curve of black points is a manifold of equilibrium states.

H
-

Fig. 2.9. The phase portrait for the differential equation (2.9)at /.S << 1.

On this portrait (Fig. 2.9), any motion of a phase point, upon a fast change, turns

to a slow motion nearby and along the phase curve V= 2gH , where the Torri-
celli law is valid. In particular, if the initial pointis ' = H,, v=0, it,at

first, will arrive at the curve v° = 2gH very fast and then will move along this
curve to the left remaining nearby. Diagrammatically, the fluctuations of the ve-

(o2
locity v (more precisely, H = Ev) corresponding to this motion of the phase
point have been already presented in figure 2.7. In the same place, we have very
roughly estimated the time of the phase point arrival from the initial state

H=H, v=0 at the small neighbourhood of the curve v* =2gH . Now,

we may improve this estimate. Indeed, let we want to know the time during which
the above initial phase point arrives at  the & -neighbourhood of the curve

v’ =2gH represented by the inequalities
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~2gHe <v? -2gH <2gHs,

where & > 0 is small. From the second differential equation (2.9) it follows that

2
\%

dv=[g - ———]dt,
pudv =[g 2(1_/12)}[]

where 4 = o/ §. is introduced. Through neglecting both the small changes of

H , being equal to H, at the initial moment, and ,az, let us write this relation

in the form

wuav

2

=dt.

2gH,

By integrating its left-hand side from v =0 to the value v =2gH(1-¢),

corresponding to the arrival at the boundary of the & -neighbourhood of the curve

=2 gH , and its right-hand side from 0 to 7, we shall find that the desired
time 7 of the phase point travel will be approximately equal to

T_ﬂ‘ngfug) dv 1o 1+\/1 £
g 7 v 2S\/ 1\/1 P

2gH

This magnitude is of the same order as the earlier roughly estimated value

,2
T being equalto o/ S 21 .
g

Thus, when the hole is small (0 /.S <<1), the fluid outflowing process is
clearly divided into the two phases: a fast acceleration phase, i.e. a speed-up oc-

curs until the velocity is close to/2gH ; , and a lengthy outflow phase with the

velocity decreasing for a finite time up to zero. Moreover, from the estimates de-
rived it follows that the acceleration time is unrestrictedly decreasing as the sec-
tion o is decreasing. This gives rise to doubts, since it corresponds to an un-
bounded growth of acceleration. Apparently, this paradox arises as a consequence
of the approximations,assumed-for.calculating the energy of the fluid in the vessel,

when the fluid velocity in all the points is assumed to be equal to H .1t is clear
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that this is not the case near the hole; the greater S / o is, the more it is not so. At
the same time, a capillar surface tension of the fluid makes it impossible for the

fluid to flow out, if the radius of the hole is less than 24/ pgH ,, where 4 isa

surface tension coefficient. If the fluid is water and /1, = 50 cm, then this hole

will be much less than 1 mm. Owing to this effect, the outflow can halt, when the
level H is decreasing. In general, a small-size hole may not only halt but also stop
the outflow. However, let us leave these phenomena aside and try to improve the
calculation of the vessel fluid kinetic energy on the basis of the hydrodynamical
model describing an outflow of ideal fluid. This calculating improvement be-

comes most essential near the hole, where the velocity is much more than H .

Let H be sufficiently small so that for the fluid inside the vessel and not far
from the hole the field of velocities will vary slowly and it can be considered
quasi-stationary. In this case, to have a possibility of comparing the expression
derived for the kinetic energy 7  let us write it in the form (Fig. 2.10)

T = Ia’a - ;dx=%pv oK = %pKJ(iZ_—)szz

a

1 H? KS
= (= pSH =2
(2'0 2)0'H

The factor inside the brackets is the previous expression for the kinetic energy.

The new expression differs from the previous one by the factor KS(cH )71 ,
where

:—j daj——dx

g
is a mean of the integral over the fluid tube. The magnitude —— is decreasing
o

_ do _ — .
with x from 1 to E’ where dS is a value of d& on the fluid surface. The
length of the fluid tube is nearly equal to H . Therefore, K is the magnitude
do
being less than /1, and the more the magnitude F decreases along the fluid

o
tube with X increasing, the more K wvaries. Thus, the factor of distinction be-
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tween the initial and improved magnitudes for the kinetic energy is less than
S/ o and its value grows as ¢ decreases. It is obvious that our error in the ini-

o
tial calculation can be great, but it is decreasing as H is growing and as d—_ is
o

decreasing rapidly when X is growing.

Fig.2.10. The fluid tube.

Now, let us find how the differential equation (2.5) will change. We have that

2 2 2
gt—(pSzKo’l LL8H SH(S) 5[— =0
Therefore,

. S H?
H=——— —_— 2.10
SK[g (= ) ] (2.10)

and, as earlier, we come to the following estimation of the acceleration time

2H
t, =K o (2.11)

g
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according to which t,, does not converge to zero as O is decreasing. Note that

2H,

is the time of a free fall from the height H, and K <1. The time of

4

the free fall from the height 50 cm is approximately equal to 0.3 sec, i.e. the accel-
eration retains fast.




3 Equilibrium and auto-oscillations of fluid level
in the vessel with simultaneous inflow and outflow

Dynamics of fluid level when the outflow through a bottom hole or a siphon
and when a constant inflow are present.

Let we now have a cylindrical vessel of the cross section S and with the bottom
hole of the efficient section ¢, and simultaneously with water outflow there oc-

curs the water inflow of the intensity (). For this case, the equation of water bal-
ance in the vessel will be of the form

SH =-ov+0 (3.1)

where U i3 the velocity of the water outflow through the hole of the cross section

o ;and H is, as before, the height of the fluid level in the vessel. Here the fluid
is considered incompressible. If the fluid viscosity is also neglected, then for

0/8 <<1 we have v =./2gH and the differential equation (3.1) may be

written as

H:—%1/2gH +% (3.2)

This equation is easily integrated, but let us consider its phase portrait through

depicting the plot of the velocity H as the function of H (figure 3.1). To the left
of the point

H = (3.3)

where H = 0, the phase points move to the right along the phase half-line
H >0 and H increases; and vice versa, to the right from the point H the

function H decreases. It means that the point / = H is a stable equilibrium
state. This equilibrium state will be approached by all the points on the phase half-
line H >0.
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From formula 3.3 it follows that the height of the equilibrium level is directly pro-
portional to the squared intensity () of the fluid inflow and inversely proportional
to the squared cross section of the effluent jet.

This is all concerning the entire unpretentious dynamics of this system — the

system always approaches its stable dynamic equilibrium H = H for the fluid
inflow and outflow.

Fig. 3.1. The phase portrait of the system (3.2) for water outflow with a constant water
inflow available.

Now let us assume the fluid outflow to be performed not through the vessel
bottom hole but through a so-called siphon, i.e. the ¢ -section tube bent in the

way shown in figure 3.2. The tube does not reach the bottom at the distance H,
and above at the height [{, it is bent, leaves the vessel and goes down till the
distance [, from the bottom of the siphon (figure 3.2) . The siphon is a wonder-

ful device to empty an incompletely filled barrel over its brims, i.e. when
H < H,. Though, this may be only done when the siphon itself is filled with

water. When it is empty, at the water level [/ < H, no water will flow through
it. Therefore, this system — the barrel with a siphon; and the water inflow — may be
described in the following way: the water level H and the variable & assuming

the value equal to 1, if the siphon is filled with water; and the value equal to 0, if
the siphon is empty. This description of the system is sufficient for prediction.

Thus, H and & are chosen by us as a description pretending to be a state of the

system. Here, we should apparently distinguish the following cases: H < H| ,
H <H<H,and H>H, For H<H, weget =0 and SH =Q.

For H > H, the siphon is being filled (if it was empty) and hence we obtain

£=1and SH =Q-0+2g(H + H,) .
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For the intermediate case H, < H < H, the values £ =0 and £ =1 are
possible. For £ =0 we get SH = Q. And for £ =1 we obtain

SH =Q-042g(H+H,) .

For the case H, <H < H, we get £ =1, if immediately prior to it we
had & =1or H > H,;and & =0 is obtained, if prior to it we had & =0 or
H<H,.

Fig. 3.2. The cylinder with a solid bottom, with fluid inflow and outflow through
the siphon.

The above dependence of & upon the value and the change of H can be dia-
grammatically depicted in figure 3.3. In it, there are given the conditions to change
by & its values from 0 to 1 and conversely, from 1 to 0. Namely, & changes from

0to 1, if H , when increasing, turns into /1, ; and vice versa, & is transformed
from 1 to 0, if H, when decreasing, passes through the value H, . The descrip-
tion just made is a mathematical model for the siphon. Here, ¢ is not a function

of A, and it is.not.a two-value function.even. It is nothing but a functional from
the previous values of /1(7) for 7 < ¢ diagrammatically shown in figure 3.3.
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0

H; H, H

Y

Fig. 3.3. The graph of dependence of é: upon the fluid level H .

In accordance with the above, the equations for changes of H are written in the
following way:

for H<H,

O IO

forH <H<H, and £=0

s
%_%,/2g(H+H3) for Hy<SH<H, and&=1

%——%,/2g(H+H3) for H>H,

(3.4)

The phase space of the system under consideration consists of the two parts: the
segment 0 < [{ < H, and the half-line /1, < H < oo, with transitions from

one to another diagrammatically shown in figure 3.3.

To construct a phase portrait in this phase space, one needs to show by an ar-
row the motion direction of each of its points according to the differential equa-
tions (3.4). For this, let us combine figure Fig. 3.3 with the plots of the functions

Q/S and Q/S—(o/S)\J2g(H + H, ) ; the first of them pertains to the

segment (0,H, ), the second to ( /|, ). Here, their three different interposi-
tions (figure 3.4) are possible. They are distinguished by the place where the equi-

librium state O occurs.
The a case accounts for the appearance of water level periodic oscillations

from H, to H, and vice versa. The b and ¢ cases describe the stable equilibrium
levels H * between H, and H, and higher than H, .
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Let all the parameters of the system under study be fixed and /, may be vari-
able. What case it will take place will depend upon the value of the root H * in

the equation
O-o\2g(H+H,) =0
equal to

=2 _q,
2g0 ’

According to figure 3.4, F{* > H, will bring a stable equilibrium of the

o+

*~——— <% . i 3 -,

e e > a
i T H, i,

H*

——————

X A _ b
" 7 i H,

H*

S aa—

e o A - c
" T H, - o,

Fig. 3.4. Possible types of the phase portrait for the system in figure 3.2 described
by the differential equation (3.4).

water level in the vessel, while //* <, will bring stable periodic oscillations
of the water level called auto-oscillations.
Therdynamicsyof theswaterslevelwillwvary in a jerky way at the value of /1,

determined from the condition
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2
2gQ0'2 =

or at

2
H,=H*= g 2 —-H,
2go

That is, H, < H;* will bring a stable equilibrium, and it will retain with in-

crease of H,; and H, > H,* will bring auto-oscillations being observed all

the time.




4 Transitive processes, equilibrium states
and auto-oscillations

Possible types of motions — transient processes, stable equilibrium states and
auto-oscillations.

In the mathematical models just discussed above we have become acquainted with
three types of motions of dynamic systems — a transitive process, an equilibrium
state and an auto-oscillation.

A transitive process took place when water was flowing out of the vessel, i.e.
the system makes a transition from its original state corresponding to the initial
water level to another state corresponding to the vessel being empty. These
transitive processes also took place in the cases when there have been obtained an
equilibrium level or a periodically oscillating level in the vessel. The latter case
occurred when water was flowing out through a siphon.

The equilibrium was of dynamic nature, as a result of a stable equalization of
the water inflow and outflow. As for the stability, its appearance was stipulated by
the water level increase causing the excess of the outflow over the inflow, and by
the level decrease, conversely, resulting in the excess of the inflow over the
outflow.

Here, most sudden and interesting is the case when stable oscillations are
arising. The matter is that they are arising without any visible impulsive reason,
absolutely themselves, and that is why they are called auto-oscillations (or self-
oscillations). Not so long ago the appearance of such oscillations was thought to
be attributed to any periodic action. With great difficulty the researchers then
assumed the periodic oscillations to be able to appear themselves, being not
stipulated by this periodic action.

In science and engineering, that the existence of auto-oscillations had been
acknowledged brought about revolutionary changes in consciousness. These
changes then sequentially happened in electrical engineering, mechanics,
chemistry, biology and economy. The existence of auto-oscillations seemingly
contradicted the nature of things, since any kinds of mechanical oscillations — say,
the oscillations of a pendulum — die down; and also dissipative are the oscillations
of an electric circuit. Where from can the oscillations arise in the chemical
reaction? Any chemical reaction strives to its termination, to a certain dynamic
equilibrium. Though, everything turned out to be more complicated. Auto-
oscillations were revealed in various physical, chemical and biological systems.
They could be harmful and useful; and soon , upon a lot of stubborn and severe
debates they began to be observed everywhere. At present these things are very
trivial already. Though, in 1930s — 1950s these things were treated not so. For a
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long time, various auto-oscillating phenomena were habitually explained through
the assumptions concerning the existence of some driving force and resonance.
These assumptions were exploited for explaining such phenomena as the car front
wheel shimmy, the aircraft wing flutter resulting in a wing damage or a loss of the
aircraft control; the oscillations of a cutting instrument in the metal-processing
machine-tool, etc. The above erroneous assumptions exposed the feebleness of the
theory in its fight against very harmful and dangerous phenomena.

Earlier than in mechanics, the auto-oscillations were generally acknowledged in
radio engineering, since these were namely the oscillations that were laid in the
foundation of a coming radio-signal transmission, radio engineering and, later on,
television.

Especially stubborn and persistent was the confrontation against auto-
oscillations in chemistry and biology. Here, conservatism manifested itself more
fiercely and longer. Even at the time when Belousov had discovered a reaction of
an obviously oscillating nature — this nature was observable through periodic
changes of solution colours — the chemists were not giving up nevertheless and
stated the impossibility of the reaction on the basis that it is never possible.

It is a habitual way of thinking that great discoveries and turns in science
demand some new complicated methods. In practice, it happens most often that
simple but substantially new methods are sooner most wanted.

Such a substantially new approach is a phase portrait of a dynamic system. It
helps to understand a natural way of appearance of auto-oscillations and this
approach makes us accept them despite our erroneous intuition. It was namely this
approach that has easily persuaded us in the siphon’s ability to give rise to auto-
oscillations. Though, more essential than separate examples seem those general
considerations that touch the point of how the auto-oscillations can be depicted on
a phase portrait and how this image can appear on the portrait. This simple
geometric image, a closed phase trajectory, had been discovered by J. H. Poincaré;
and this scientific mathematical discovery was connected with practice and the
theory of oscillations by A.A. Andronov. His well-known publication carried the
same name - “The limit cycles of J. H. Poincaré and auto-oscillations”.

How can the phenomenon of appearance of auto-oscillations in dynamic
systems be explained to-day? How can one explain the natural and usual nature of
this phenomenon?

Let a dynamic system be described by differential equations

x=X(x),

where X is a vector; and its phase trajectories are envelopes of the system field
vectors, i.e. the velocity vector X is tangent in each of their points. If the field of
velocities, i.e. the vector-function X (x) is such that the phase trajectory is
closed, then auto-oscillations will arise. For this purpose, the vector-function
X(x) should be chosen properly, and this thing is done easily. The vector-

function should be chosen so as to have the bunch of phase trajectories entered its
own tail and compressed itself, as shown in figure 4.1.
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The compression of phase trajectories ensures not only the existence of a closed
phase trajectory but its stability as well. In life this happens very often: this very
situation creates the possibility that a fiddle string is singing, an organ is ringing, a
flute is lifting, a nightingale is singing, we are speaking and singing, our heart is
running, we are walking and running, your watch is running, radio signals are
being transmitted, grasshoppers are chirring, a car brake is squeaking

Fig. 4.1. A behaviour of phase trajectories giving rise to an auto-oscillation in the three-
dimensional case.

disgustingly, and more disgustingly squeaking is the finger-nail when being drawn
across the glass.

For a two-dimensional case, i.e. for the case of a two-dimensional phase space,
it becomes possible to depict more vividly a general behaviour of phase
trajectories yielding the auto-oscillations (i.e. yielding a stable closed phase
trajectory, to which the neighbouring trajectories are arriving). Let one phase

trajectory y, be winding up, and another phase trajectory y,, lying inside, be

winding off, as shown in figure 4.2.
It is seen here that between them there lies the closed phase trajectory » onto

which they are being wound (shown by a broken line). Later on you will be
suggested some specific examples describing a real object. They will describe
such a behaviour of phase trajectories. Right now, only an example of a

differential equation is given. Let  @,7 be polar coordinates satisfying
differential equations

A A
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From this equation it is seen that the phase trajectory, starting at @ = 0 and
r=1/2, is winding off, and that, starting at the point @ =0, =2, is

winding up. Both trajectories are separated with the circle 7 = 1 corresponding to
a stable periodic rotation, i.e. an auto-oscillation.

Fig. 4.2. The behaviour of phase trajectories giving rise to an auto-oscillation in the two-
dimensional case.




S Dynamics of the water surface level in a reservoired
hydropower station

A phase portrait and equilibrium regimes for a hydropower station. Critical
values. Bifurcation diagram.

In our previous chapters we were constructing and studying mathematical models
for a water-filled barrel with water flowing out through a bottom hole or a si-
phon;water inflow is also possible. A barrel is the object deserving our attention.
Except his astrological investigations, Johannes Kepler studied the problem of
measuring a volume of the water-filled barrel without pouring out its water.
Among his contemporaries, the solution of this problem was one of his most
popular investigations. Though, it was long ago and since that time the “barrel
became less urgent”. So here, we also jump from a barrel simulation to the
mathematical models of more significant objects, and namely, to simulating a re-
servoired hydropower station and also a priceless fluid pump held in our breast,
our heart. These objects are of complicated nature, but, nevertheless, their models
will remain simple, primitively simple. Despite their simplicity, these models are
able to reveal us something important, deeply veiled and interesting.

Figure 5.1 schematically shows the water reservoir of the water level ' and
the dam to sustain this level; the dam is equipped with a hydraulic turbine and an
electrical generator. From the reservoir, water runs through a tubular corridor to
the turbine and turns it round. The generator connected to the turbine produces

electrical current of the needed power W . The reservoir has some water inflow
whose total inflow intensity is equal to (J. The magnitude () is time-dependent

but assumed constant. Water in the reservoir is spent for rotating the turbine. Also,
there should be taken into consideration both water evaporation and filtration,
which will increase as soon as the reservoir water level increases. Our target is to

study the water level variation H . The water discharge required for electrical
current production will depend upon the intensity of using the water by the turbine

and also upon the water pressure determined by the water level H . With all these
things taken into account, it becomes possible to write the following equation

d w

H
§—=0-1-F-—r-— — | 5.1
a2 kpg(H + h) G0

where S (/1 ) is'a teservoir surface squate; / and [ are evaporation and filtra-
tion intensities, respectively. Here, the last term stands for the water discharge
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intensity needed to produce the electrical power W, provided that the power sta-
tion efficiency coefficient is equal to & .

Fig. 5.1. The scheme of the reservoired power station with a dam.

The last term (the water discharge intensity) in formula (5.1) is calculated in the
following way. Let the desired total volumetric water discharge be equal to P . If
the water overfall before the hydroturbine is equal to H + &, then the water out-

flow from the reservoir to the hydroturbine for the time df will release the energy
equal to

pgP(H +hyd .

One portion kpgP(H + h) of this energy will be transformed to electrical en-

ergy of the needed amount W . (Here k stands for the efficiency coefficient of
the hydroturbine, with the electrical generator included). Thus, we obtain

kpgP(H +h)y=W ,
from which the needed intensity of the hydroturbine volumetric discharge

p-_ "
kog(H +h)

may be found.
Now, we will study the differential equation (5.1) derived. For this purpose, we
need to depict the graph of the right-hand side of the equation as the function of
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H . The right-hand side of this equation involves the constant component (), the

magnitudes / and F' increasing with the growth of the level H | and the last
term which, on the contrary, increases with the decrease of A . For H <0 the

last term will vanish, since the water delivery to the turbine will cease. Accord-
ingly, the more complete form of the equation (5.1) will be as follows

W

. - -F -

SH = © kpg(H +h)
O-H-F

for H>0

. 5.2
for H<O0 52

The plot for the right-hand side of the equation (5.1) will be of the form given in
figure 5.2.

y

{’\ |
T~

[ | H

-H, H=0 H," H,

Fig. 5.2. The phase portrait of the system “reservoir — hydroelectric station with a dam”
described by the differential equation (5.1).

In this figure, the right-hand side magnitude indicated through arrows is the dif-
ference between (J and the rest terms. In accordance with this plot, there are three

equilibrium states on the phase half-line H > —H . The equilibrium state
O,(H = H,) is a stable one, in which a fully efficient running of the hydroe-

lectric station is provided, with the required power W being produced. The equi-

librium state O , with /7 = 0, is also stable but fails to ensure the full power W
and ensures only a portion of it equal to

kog(O—-1-F)| <w,

H=0
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because for H = 0 we, as seen in figure 5.2, obtain

w

—J—F—
¢ kgph

<0 .

At last, the unstable equilibrium state O, (H{ = H,*) . This state is interesting by
the water level increasing, for 1 > H,| *, up to the magnitude H = H, *; and
here the needed energy output is provided. On the contrary, at A < H, * the

level H falls down to zero and this results in the inefficient operation of the hy-
droelectric station. Note here that the hydroelectric station fails in its running not
due to the lack of the water needed but rather because of the incorrect choice of

the operating regime done. You know that with the same inflow (), when the
system lies in the equilibrium O, the station is just able to provide the electric
power W .

From the above said it follows that no drop of water level lower than
H = H,* is admitted. It is the level | * that becomes crucial; if the case is

below this level, then some emergent measures will be needed. Namely, electrical
energy consumption and station output have to be temporarily reduced; only upon

the level [/ having exceeded H, * we should again return to the normal ex-

ploitation of the hydroelectric station.
Now let us see what emergencies may arise due to the temporary decreases of

the inflow intensity () or due to the cases when the temporary increase of the
power W is needed. As seen from the plots in figure 5.2, the drop of the inflow

Q below some value 0, arg Can result in the decrease of H below the critical

level H, *. With O decreasing, the equilibrium states O, and O, will ap-
proach each other; for Q = Q,, they will merge; for O < Q_ will vanish. Upon
this, the level H will approach /' =0 and may become less than H, *. An

identical result can be also achieved through the temporary increase of W . In
these both cases, to return to the previous normal regime of the hydroelectric sta-
tion it is necessary to temporarily drop the power output and wait until the level

H has exceeded its critical value H| *.

Now let us assume that the hydroelectric station cannot vary its output, whereas
the inflow Q) is varied by the humanly-uncontrollable nature. Let us draw the
diagram showing how the equilibrium operating conditions of the station depend
upon the inflow (). At one value of () (depicted in figure 5.2) we obtain the be-

low equilibrium states O, (H,*), O,(H,*) and O (H,*=0) (figure 5.3).
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Here, the circles stand for stable equilibrium states and crosses for unstable. Now
we shall start to vary (J. With () decreasing, the equilibrium states O,

Qs o

Fig. 5.3. The bifurcation diagram of the balanced levels in the reservoir with a hydroelectric
station.

and O, will approach each other ( /1, * is decreasing and [, * increasing). For

the equilibrium state O, the magnitude H will still retain equal to zero. At some
critical value Q = Q)

marg > the equilibrium states 0] and 02 will merge, and
with ) decreasing further these states will vanish. Upon their having vanished,

there will retain only the single stable equilibrium O. In this equilibrium state
H =0, the hydroelectric station will not be able to produce the full electric
power W | since the water expenditure P , determined from the relation

O-1-F-P=0,

will be less than the expenditure required to produce the power W . At the

kgoh

reverse increase of (J, the hydroelectric station will assume the non-complete

operating regime / = 0 until we achieve Q = g , where

O=I+F+

kgph

Upon () growing above —Q_ , the operating regime O will cease to be balanced.
Therefore; the -hydroelectric station.will-arrive at the favourable operating regime
O, , at which it will be able to supply the nceded power W' .
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In figure 5.4, repeating figure 5.3, it is shown how the operating regime of the
station will vary under, first, the slow decrease of the inflow () (described above)
and then its increase.

N
~

L.
e

-3

—

y °

Fig. 5.4. The hysteresis phenomenon for the dependence of the reservoir level ' upon the
inflow Q (illustrated graphically).

These changes are specific in the following: the same inflow (O for
0,<0< Q yields the two substantially different operating regimes for the

hydroelectric station, corresponding to the two stable equilibriums, O, and O.
From the viewpoint of the hydroelectric station functioning, the first regime will
be good and the second poor. Which of these operating regimes will occur de-
pends upon the history of the variations of () . It is easily seen here that the na-
ture of this dependence looks similar to that we had when were dealing with the
siphon.

The diagrams in figures 5.3 and 5.4 help us to easily trace the dependence of
possible equilibrium operating regimes upon the inflow () and reveal how these
regimes replace each other at the slow changes of (). This diagram is usually
called a bifurcation diagram for the equilibrium states with respect to the parame-
ter (J, i.e. the diagram for changes of equilibrium states, when () varies.

From the above said, it follows that it is hardly possible to realize the control
strategy, under which the constant output W of the station could be obligatorily
demanded despite the fluctuations in the level H and the inflow (). Such strat-
egy will be poor as well, because it may entail the situation, in which the station
will fail to ensure the output W . Though, another control strategy may exist, un-

der which this output could be provided absolutely.
It is clear that the most favourable operating regime for the station is its running

at the maximally possible /. (being determined by the dam height), since this



5 Dynamics of the water surface level in a reservoired hydropower station 63

case will provide the minimal water discharge per a unit of the power produced.
This very operating regime is the most efficient not only from the viewpoint of
water discharge but also it produces a maximally possible power for the given

inflow (). This operating regime is ideal., so to say. Though, with the given
H . this regime is realizable in the case of the absolutely certain inflow Q

equal to

w

I+ F+ )
kgp(h+H,, )

If O decreases, then this optimal operating regime will be disturbed and will
transfer to a less favourable one (with the output W retained), providing the level

H smaller than /. Here, it is clearly seen that this situation brings a loss of

possible total energy. In order to avoid this, the electrical power W can be re-
duced so as to retain the water level equal to H . You see here that we en-

counter a problem of the optimal control for the station. To study the similar
problems theoretically is an objective for the special science that has appeared not
long ago and is still under development. This science is the theory of optimal con-
trol. It is an independent part of the more general science called the operations
research.



6 Energetic model of the heart

Types of crisis states and crucial values. Narrowing the vital capabilities.

We will construct and study a very simple energetic model of the heart. This very
complicated organ will be studied via a very simple model. It turns out to be pos-
sible. A very simple model turns out to be useful and is able to tell us something
very important and interesting.

From the functional point of view, the heart is a four-chamber pump supplying
blood for the entire organism. One half of the heart pumps blood along the so-
called small circle, through the lungs enriching them with oxygen. The blue ve-
nous blood turns into red, its red corpuscles, upon absorbing oxygen, change its
colour. Another half of the heart is responsible for supplying all human organs and
tissues with arterial blood filled with oxygen. This is the so-called big circle of the
blood circulation. The heart cannot cease its work, it must run continuously, day
and night during the entire life.

Though, the heart is far not a simple pump. It is the pump controlled by the
commands from the vegetative and the central nervous systems. Its functioning is
coordinated with a physical and psychological loads of its owner. The heart
should sustain the balance between its big and small circles of blood circulation.
Its thythm and operational intensity are regulated by commands from the nervous
system. This nervous regulation is a multistaged one and of great complexity. The
heart performs its mechanical work at the expense of the chemical energy accu-
mulated by it. This energy is continuously replenished by the blood incoming as a
result of heart's functioning. Thus, the heart, so to say, feeds itself and works
thanks to this very feeding.

The heart is a complicated controllable pump responsible for pushing the blood
through the small and big circles. Here, the blood is accepted by the heart auricles
and pumped further by the heart ventricles. For this purpose there should exist a
system of valves (a mitral valve, an aorta valve and others) and also some compli-
cated networks of arterial and venous vessels, right down to the thinnest capillary
vessels transporting the blood to the tissue cells. Converting the chemical energy
of the adenosindiphoshatic acid to the mechanical work is a very complicated pro-
cess. Also very complicated is the control system of the heart being responsible
for sufficiently supplying the blood to the body without any excession or increase
in the time of physical, mental and stress loads. The control system of the heart
performs a coordination of the blood pumping across the big and the small circles
causing, thus, no blood overfill in organs and tissues of the body. Elastic contrac-
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tions and relaxations of vessels are of great help to this process. The control sys-
tem provides also a synchronous contraction of some heart muscle tissues and a
possibility of heart’s autonomous activity. All these things are too complicated.
Mathematical models of the heart are greatly needed for the contemporary medi-
cine in order to understand how to help the heart, especially in the so-called emer-
gency situations — when performing reanimation, surgery on the heart and when
treating this or that disease.

Contemporary models are able to simulate only some separate aspects of this
very complicated activity of the heart. Right now I am willing to describe you a
very simple model which simulates only the fact that the heart is controlled by the
nervous system and by some chemical substances transported into the heart, and
also the fact that the heart lives only because it feeds itself through its functioning.
Accordingly, the heart will be described by two variables only — by the control
command # being executed by the heart unconditionally and by its current energy

stock () being spent for heart’s running and replenished by the blood circulating

through the heart. The energetic stock () is even consumed by the idle heart, i.e.

when it is not running. This stock is spent for sustaining the life of heart’s tissues.
In accordance with this, we may write the below differential equation

L i f.0)+800) 61)

where @ is an intensity of consuming the energetic stock (J in order to sustain
the life state of the nonfunctioning heart; f(u,(J) is an intensity of spending the
energetic stock by the heart for its blood pumping; and g(u, () is an intensity of
replenishing the stock (J by the blood incoming the heart . The magnitudes u
and () may vary within some limits 0 <u <u_, ,0<0<Q, . (figure 6.1).
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Fig. 6.1. The geometrical interpretation of the heart energetic model described by the dif-
ferential equation (6.1) on the plane of the heart energetic stock Q and the control % .
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In order to make the written model specific, one should be aware of the func-
tions f(u,Q) and g(u,(Q), at least on a qualitative basis. It is clear that both at

# =0 and Q =0 these functions are nullified, i.e.

f0,9) = f(,0)=2(0,0) = g(u,0) =0

Further, f(u,(J) is a nondecreasing function of both arguments. Since O

cannot exceed Q. ,

_a—f(u’Qmax)+g(u>Qmax) < O

It is natural to assume that for # = u

d
then for O = Q__ we get ZIQ— < 0 and therefore obtain
4

max > 1-€. at maximum loads, the heart will

d
be fast exhausted and here we get -dg <0 . Therefore, on the sides O =0,
!

u=0and u= U .., of the rectangle (Fig. 6.1) the right-hand side of the differ-
ential equation (6.1) will be negative.
On the fourth side Q = it will be not positive. And meanwhile, we live a

long life and ,therefore, there should exist some domain inside the rectangle where
the right-hand side of the differential equation (6.1) is positive. It will then lead us
to the picture (figure 6.1) where arrows show the direction of replacement of the

point M (u,()), with u being fixed. An exact boundary of the domain, within

which the internal energetic stock (O of the heart will grow, is certainly not known
, but for our purpose this knowledge is not needed. Our further conclusions will
rest only upon our general ideas concerning the shape of the domain (G inside
which the stock O will grow until its boundaries. Beyond this domain G , the

point M (u, D), when travelling under the fixed control command 1, will ar-
rive either at the segment with (J = 0 or at the portion I of the domain bound-
ary .

Observing the possible motions of the point M (1, (J) as u varies, it may be
noticed that until the point M (u, Q) lies to the left of the line O = it may
arrive at any place and may be brought to any place where Q > (.. Conversely,
for Q <(Q,, its fate will be predetermined; independently of the variations of %

the point M (u, Q) will arrive at the boundary () = 0. This will bring death to
the heart. Death will be inevitable, if no associated reanimating measures are
adopted. Thus, it is clear here that only until the point M (u, () lies to the right

fromsthe line. Q.= ). it.-may.stay-beyond the domain G within that its part
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where it arrives at the segment of (J = 0. Besides, these urgent measures to
eliminate the fatal displacement of the point A (¢, (J) must be different for the

case of this point lying above the domain G and for the case when it lies below
this domain. In the first case, further high loads upon the heart should be timely
cancelled, i.e. # should be reduced. In contrast to this, the second case implies a
necessity to stimulate heart’s activity, i.e. # should be increased. It is not difficult
to see here that the first case implies prolonged loads which should be stopped.
The second case represents an insufficient activity of the heart, insufficiency of its
stimulation; this case needs an increase of #, with possible exciting medicines
administered as well.

Thus, our model distinguishes only the two absolutely different crucial states of
the heart: the first state is called a durable load upon the heart and the second im-
plies a durable extreme weakening of the heart’s activity. Note here that a durable
intensive activity of the heart may be caused not only by actual physical overloads
but also by some stress and overexcitation of the nervous system.

Now, let us see how the domain G will undergo variations in the situations
when the heart-feeding vessels are constricted and the efficiency coefficient of the
heart decreases. This is caused, in particular, by a lack of training, intoxication or
by a general exhaustion of the organism.

The first case will decrease the value of the feeding function g(u,()); the
second will increase the value of the function f(u,Q).

Both cases will produce the same effect — the lessening of the domain G
which will reduce the vital capabilities of the organism. In particular, here 0,

will increase and there will appear a decrease in the loading capabilities and si-
multaneously in the heart’s relaxational capabilities. However paradoxical it may
seem but in this situation the heart will have to work more intensively and at the
narrowed restrictions of overloads. As a result of this, the heart will be deprived of
any relaxation and will possess a small power stock and a very limited reserve.
This situation may be partially bettered via artificially widening the coronary ves-
sels by medicines and, possibly, by moderate training, in order to increase the
efficiency coefficient of the heart’s muscle and that of the entire heart.

Such are the conclusions possible to be made on the basis of this primitive en-
ergetic model of the heart. This model covers only the fact that the heart’s func-
tional intensity is governed by the control # and that the heart supports its life
through its unceasing work. It may be noted here that any living creature placed
amidst merciless nature is granted the same specificity — it is forced to constantly
escape from its enemies, search for food and get it. The intensity of these searches
and escapes is dictated by it itself and circumstances. The difference between this
poor creature and our human heart lies only in the rigidity of the external demands
which humans have successfully managed to soften, more or less.



7 Soiling a water reservoir with a bay and the
Caspian Sea puzzles

Polluting a water reservoir with sewage of dissolvable pollutants. The
Caspian Sea puzzles. Soiling a water reservoir through a bay. Regulating
a water regime and salinity.

The next mathematical model to be discussed is soiling or solvable pollution of a
water reservoir by incoming waters. Besides its ecological aspect, this model
relates to the mystery of the substantially different salinities of the Black and
Caspian Seas, having a common origin. The soiling model for the Caspian Sea is
constructed with use of our previous consideration of the equilibrium water level
when an inflow and outflow take place. Though, the Caspian Sea equilibrium level
may carry substantial specificity to be discussed below. When discussing the
soiling problem of some certain closed restricted water reservoir, it is clear that its
incoming waters with dissolvable substances make this reservoir more and more

soiled and this results in saturation and sedimentation .
Let () be an intensity of the incoming stream and V a concentration of the

polluting substances. Further, let © be a volume of the reservoir and [/ an
intensity of evaporation from its surface. The evaporating intensity depends upon
many aspects, among them are air humidity, air temperature and wind. Though,
its average value is determined mainly by the size of the evaporating surface being

dependent upon the volume . Analogously, the incoming stream intensity

will vary and depend upon many reasons, though its average value () will retain
sufficiently constant.

Let the equation for the balance of the incoming and evaporating water be of
the form

dv
Z—Q—I(U)

and the equation regulating the accumulation of common pollutants in the
reservoir have the form

aM
W—VQ .
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Since 7(0) is an increasing function of 0, the first equation will yield the stable
equilibrium level U * determined by the equation

0-1(v)=0 .

This is explained by the plot in figure 7.1.

Irv)

Fig. 7.1. The phase portrait of the water level dynamics in the reservoir with the
evaporation dependent upon a water volume.

From the second equation it follows that the size of pollution grows steadily.
First, this growth causes a growth of polluting concentration equal to M /v, and
upon it, when saturation has occurred, the concentration ceases to grow. Then, the
process of bottom sedimentation is initiated.

It is seen here that this model is not capable of revealing the reasons for
existing differences in the salinity of the Black and Caspian Seas. Some other
circumstances have to be taken into consideration. What are they exactly? The
Black Sea is not completely closed. Through the narrow Bosporus strait it is
connected with the Mediterranean Sea. At present, through the Bosporus strait,
water is chiefly flowing out . It is so at present, but earlier this sea was closed. As
for the Caspian Sea, it is always isolated from the ocean, though, in spite of it its
salinity is greatly less than that in the Black Sea.

Where then does the basic difference lie? This difference at first is not striking
our eyes. The deference is explained by the presence of the Cara-Bogaz-Gol bay
of the Caspian Sea. At the first sight, this presence seams of no great weight, for
the Caspian Sea remains closed so far. But actually it is not absolutely so, because
the waters of the bay and the Caspian Sea are not being intermixed. The Caspian
Sea waters flow into the bay always. The strait connecting the Caspian Sea and its
bay is narrow and long; a water drop in it makes up about 4.5 metres. This
specificity will be accounted by us in our more complete mathematical model
which we will construct now.

Let v and 0, be total water volumes in the reservoir and the bay; () and v

will be given the previous values; I and /; will be the evaporating intensities of
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the reservoir and the bay; ¢ will be the intensity of the water outflow from the

reservoir into the bay (figure 7.2).
In this notation we immediately obtain

dv
=
(7.1)
dy,
? q-—1

Besides, we have

(7.2)

a

where M and M, are general masses of the dissolvable pollutants in the reser-
voir and the bay; £/ is a pollution concentration in the reservoir. Assuming the
reservoir pollution having not yet arrived at its saturation, we shall obtain that

u=M/jo.

Fig. 7.2. The Caspian Sea with its Kara-Bogaz-Gol bay (represented schematically).
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In contrast to this, the saturation in the bay has been taking place for a long time
already; gigantic sodium, magnesium and other sediments have been already
formed on its bottom.

The system of differential equations (7.1) and (7.2) obtained describes a water
balance and a balance of the dissolvable pollutants. The first two equations for the
water balance are independent of the remaining two; thus, they may be considered

separately. However, this consideration is hampered by / and I, being
dependent upon © and v, , respectively, and by g being a function of U and
U, . Besides, to write these specific dependences is extremely difficult. Alongside

with it , these equations are evident to have the stable equilibrium state 0 *, 0, *
being found from the equations

1) +q,0,)=0Q

. (1.3)
I (v)-q(,0)=0

We will deal with this later; and now, assuming a presence of such a stable
equilibrium, we come to the analysis of the differential equations (7.2) for the
mathematical model of the water reservoir with the bay. The last equation is
already well known and brings us nothing new: a mass of the pollutants in the bay
will infinitely increase with time. Thus, the concentration of pollutants will grow
and then this growth will cease as soon as saturation and sedimentation are
achieved.

Conversely, the first differential equation informs us about a drastic change of
the situation. It informs us about the fact that an infinite growth of pollutants has

been transferred to the equilibrium concentration & * found from the conditions
under which the right-hand side of the differential equation is nullified.

#q(,0)-v0 =0 .

With v > 0*, v, >0, * taken into account, we shall find the below

equilibrium concentration

__vo
q([) * ’ Ul *)
It is worthy of mentioning here that the water equilibrium arises more rapidly

than the equilibrium concentration does. Therefore, the general process of the
arrival at the equilibrium may be divided into two stages: a relatively rapid arrival

at the equilibrium volumes ©* and v, * and the comparatively slow arrival at

the equilibriti concentration )z "Upstilarriving at the equilibrium volumes v *
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and U, *, the equilibrium concentration, due to (7.2), will be described by the
differential equation

d
0* =V 0 - g o

This equation is solved easily and its solution with the zero initial condition will

be of the form

o

- Q(U*, Ul *)

lil _ eXp(— q(U*’fl*) f):] —
12

(7.4)
Sk K
:/U*|:1_exp(__q_(u—’ul_)t):| )
U*

We notice here that, as it follows from the formula (7.4), the concentration £/

will constitute the 1~ e~ part of the equilibrium concentration £* at the time
O* /g *. This time is equal to the time during which the equilibrium volume ©*
will outflow from the Caspian Sea into the Cara-Bogaz-Gol bay. With this time
doubled, the concentration £/ will be already equal to (1 — e’ )4 * ; hence, as

an estimate for a transition time of the equilibrium concentration £/ * one may
*
take the time 7 = —.
q*

Now we are return to the equilibrium concentration £ * . It is equal to

Y

gt 0%)

and seemingly demands the knowledge of v, J and ¢ . However, making use of

the equations (7.3) determining the volumes ©* and v, *, we shall easily find
that
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T % % *
= VQ :vq + =V 1+—{—— =V 1+L N (75)
Q(U*sU1*) q* q* 11 *

where stars indicate the associated magnitudes being taken at the equilibrium
values 0 =0* and v, = v, *.
The ratio / * /1, * in (7.5) is roughly approximately equal to the ratio of the

reservoir and bay surfaces, i.e. S/.S,. For the Caspian Sea and the Cara-Bogaz-

Gol bay, this ratio is approximately equal to 37. Therefore, the equilibrium
concentration in the bay exceeds only as much as about 40 times the average salt
concentration in the sweet water streams of the rivers and rains running into the
Caspian Sea.

The Cara-Bogaz-Gol bay, thus, plays for the Caspian Sea a role of some
sedimentation tank sucking off the dissolvable pollutants from the sea. The same
role for soiling reservoirs may be played by artificial bays. For this, there should
be provided an unceasing level drop of the water from the reservoir to the bay.
Otherwise, a reverse stream from the bay to the reservoir will spoil everything.

Therefore, a smaller salinity in the Caspian Sea as compared against that in the
Black Sea may be explained via the existence of the Cara-Bogaz-Gol bay.

However, our assumption concerning the equilibrium of the volumes v* and
U, * does not hold entirely. The Caspian Sea level varies in a very surprising way

— it is fluctuating about one magnitude or the other. The difference between these
fluctuating levels significantly exceeds the oscillations about each of them. These
changes are hardly explained by either weather changes or tectonic changes in the
bed of the Caspian Sea. This is also one of the puzzles of the Caspian Sea.

The relatively slight fluctuations of the Caspian Sea level do not eliminate the
above explanation for the small salinity of the sea and the formula (7.5), but these
fluctuations are significant for the exploitation of the Caspian Sea and interesting
in themselves. Prior to starting to outguess this wonderful phenomenon, let us
investigate the seemingly evident supposition concerning an existence of the

stability of the equilibrium volumes ©* and v, * in the Caspian Sea and the bay.

Let us also find out whether this equilibrium is unique or not and whether there
exist any auto-oscillations as well.

We return now to the differential equations (7.1) of the water balance in the
Caspian Sea and the bay. A phase space of this system is the first octant of the

plane U , v,, for which © >0 and v, = 0. First of all, let us find that all the
phase trajectories arrive at its finite part of the form

v+, =C>0.

It follows from the fact that for sufficiently large © and v, (large C) we obtain
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L w+v)=0-10)~1,,) <0 .
dt

Figure 7.3 shows the cross sections of the Caspian Sea, its bay and the strait
connecting them, demonstrates the highest level of the strait.

" ra

Caspian sea \_S/
Cara—Bogaz-Gol bay

Fig. 7.3. The bottom profile of the sea, its bay and the narrow strait connecting them.

From this figure it follows that the phase space, the first octant © >0 , v, >0
of the plane U,v, is decomposed into the parts where ¢ =0 , ¢ >0 and
q < 0. It is clear that ¢ =0 when the Caspian Sea level and the bay level are
lower than those in figure 7.3. Let it take place for © < U and 0, <V,. The
case ¢ =0 takes place also when the level of the Caspian Sea and that of its bay
are equal to each other but © >0 and U, > U, . The set of the phase plane
points, satisfying g = 0, consists of the rectangle v < v and v, SV 1 and

some curve ¥ presented in figure 7.4 .

Ur A |

Yo

I

Fig. 7.4. The graphically illustrated search for the domain at which arrive all the trajectories
of the phase space 0 = 0, v, 2 0.
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This figure also holds the straight line v+, = C intersected by phase
trajectories from outside to inside as shown by arrows. This line together with the
axes U =0 and v, =0 confines the domain, into which all phase trajectories

income, i.e. upon some sufficient time any phase point (0,0, ) will fall into this

domain.
Now, upon our preliminary considerations, let us come to studying the steady-
state motions of the system (7.1). It is clear that they depend upon the inflow Q,

the functions /(v) and I(v,), and the function g(v,0,) .
For Q <I(v) all the phase trajectories will enter the quadrangle, where
q =0, and will then come close to the equilibrium state v =0* <y and

v, =0, where v * is a root of the equation

Q-1(v)=0;

the root is unique, provided that /'(0) > 0. As far as only an inflow from the

Caspian Sea was included into the second equation (7.1), the bay will dry up.
Notice that this very event has happened with the Caspian Sea — to the bay strait
having been temporarily blocked with a dam.

For O > I(v), all the phase trajectories enter the triangle confined by the
straight lines 0 =v,, U, =0 and v+, = C; thus, this triangle holds the
equilibrium states. In one part of this triangle we have ¢ >0 and in another
q < 0. They are separated with the curve y, on which ¢ = 0. Above and on this
curve we have ¢ <0 and O, < 0. Therefore, all the phase trajectories, starting

in the curvilinear triangle confined by the lines v =0, v+ v, = C and by the
curve }, depart from this triangle; so, this triangle can hold no equilibrium state.

Now we will show this equilibrium to be unique and stable. Further, it will be

shown that there exist no closed phase trajectories and, thus, this unique
equilibrium state is stable globally. Certainly, this rests upon certain properties of

the functions 7(v), I(v,) and g(0,0,).
We will accept, except Q > (V) that

_C_i_[_(_[)_~)_>0 M>O §i>0 aiso

(7.6)
dv dy, ov oy,

Letus reduce (7.3) to the form
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](U)+11(U1)=Q
1(0) - 4(0,0,) =0

Differentiating the first equation (7.7) in U we shall get

d[ dl, dv,
v dv, dv
. dy,

therefore, due to (7.6), we obtain <0.

v

Similarly, from the second equation (7.7) it follows that

d] aq aq du
du 80 ov, du

dy, o o
and then -—C}——— > (; besides, it may turn to infinity.
1

77

(7.7)

The first relation (7.7) defines &), as the decreasing function ©; and the second

relation (7.7) as the increasing function being able to have vertical segments or be
a vertical line in general. The intersection of these curves is unique and defines the

unique equilibrium state v, v, *

Thus, under natural assumptions, the equilibrium state exists; let it take place

for v=0%* and v, =0, *.

Now we will show the equilibrium state to be stable. For this purpose, let &

and 77 be such small deviations from the equilibrium that v =0*+<&,

— ., X
v, =0 47,

The deviations ¢ and 77 meet the differential equations

O o 1wr 1) - qoré, v * )

dt

d(v, *+7)
dt

=q(V*+g, v *+) =1 (v, * +7)
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and, upon linearization, we obtain

. _[_oq_dl'), 04
é:_( ov dujgg 61)177

0 0 dl
I . B I P
ov ov, duy,
where the derivatives are calculated for v =0* , v, = U *

Whether the equilibrium will be stable or unstable is determined by the roots of
the characteristic equation, which in our case is of the second degree and has the
form

A +A1l+B=0.

The stability will occur, if the roots of this equation lie to the left of the
imaginary axis. For this, it is necessary and sufficient to have

A>0, B>0.

Through calculating the coefficients A and B, due to the above inequalities,
we immediately find that

O 4 %  dl
61) dv ov, duy,

A= >0

dl oq +§idll +ﬂcﬂ1
dv ov, Ovdv, dvdy,

B=-— >0 .

Thus, the equilibrium state is existent, stable and unique.

It is intuitively clear that this study was unnecessary; though, on the other hand,
this study makes it impossible to conclude that except the stable equilibrium there
exist no other steady-state motions that can be only stable periodic motions.
Nevertheless, no such motions are existent, as it follows from the well known
Bendixon criterion, under which valid is the below inequality

oP 6Q>
81) oy,

0,
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or its reverse (where P and () are the right-hand sides of the differential equations

(7.1)), is sufficient for the absence of the limiting cycles within the domain,
where this inequality holds. In the case under consideration, on the basis of our
assumptions we get :

_Qpi+_§g:_£_a_q+a—q__di<o_
ov 0y, dv ov oOvu, duy,

Hence, the equilibrium state (0*,0,*) is globally stable and all the motions will
converge to it, i.e. for any initial conditions we shall obtain

vty > v*, v t)>0u *

as I —> o0 .

Thus, under our natural assumptions it seems not only intuitively but it has
been proved that the equilibrium is unique and globally stable. Why then do these
observable transitions of the Caspian Sea equilibrium level from one level to
another arise? This is an actual puzzle. The assumptions done look so natural. But
for us here there is no way out and we should, nevertheless, find what of the
assumptions is wrong.

We recall you here that the above suggested assumptions were ) > /(v) and
the inequality (7.6). The puzzle, certainly, would have been fully eliminated, if the
water inflow (), averaged throughout some years, had changed drastically or the

Caspian Sea bed had changed, and if these changes had been similar, more or less.
But this was not observed. What are then any other faulty points? Let us now look
at the inequalities (7.6) adopted by us: here the weakest place is seemingly the

dl
assumption — > 0. Indeed, we can think out the situation when this assumption
12

may be false. Let the Caspian Sea bottom be of the shape shown in figure 7.5.

::3?_
%

Fig. 7.5. The hypothetical profile of the Caspian Sea bottom and different possible levels
1, 2, 3 and 4 of the sea.
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The hump in the centre of the figure implies possible shoal banks. Now let us
see how the evaporation intensity changes in hot weather, during the transition
from the lowest level (in figure 7.5 denoted through 1) to the top level 4.

During the transition from 1 to 2, evaporation will grow drastically. In the
course of the transition from 2 to 4, evaporation, despite a general increase of the
sea surface, may decrease, because shallow waters have become deeper and
substantially cooler, and, hence, less vaporizable. In the course of the further
transition from the level 3 to 4, evaporation will increase again. Thus, the
existence of shoal banks may lead to the shape of the graph I(v)presented in

figure 7.6.

A(V) La
Ll 0-q
| | |
| | Hin | 7]
R e

Fig. 7.6. The phase portrait of the variations of the Caspian Sea water volumes for the
incoming stream (J, when the intersection takes place in the three points, to which there

correspond the two stable equilibrium states, 01 R 03 , and the one unstable equilibrium

stat, O, .

Now, as seen from the same figure, the equilibriums here may be already three
in number. Neglecting the magnitude g << for simplicity, let us study the

behaviour of these equilibriums at time changes of (). This incoming stream

sometimes falls beyond the limits /,,, and I, shown in figure 7.6.

n

Here, a phase space is the half-line © > 0 and a phase portrait is determined by
the below equation

dv
E-Q_I(U) .

The intersecting points of the plot /(v) with the line () in figure 7.6
determine the equilibrium states; and the arrows describe the magnitude and the
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sign of the difference Q — I(V), i.e. dv/dt . For the case in figure 7.6, there
will exist the three equilibrium states, O,, O, and O,, O, and O, being stable
and O, unstable.

How O,, O, and O, depend upon () may be now shown diagrammatically.
The coordinates of the equilibrium states O,, O,, O, will be denoted as u, *,
u, * and u, *, respectively. Then, we shall arrive at the dependences of u, *
u, * and u, * upon Q shown in figure 7.7.

The circles on this plot, being called a bifurcation diagram, stand for stable and

crosses for unstable equilibrium states. For [ . <Q <[ there will exist the

max 2
two stable equilibrium states, %, * and u, * . With the inflow ) decreasing
below /. , the both equilibrium states will turn to ©, * ; besides, the state u, *

in a leap-like fashion. With a further increase of () above [ the state 1, *

max ’

will turn to #; *, by a leap as well. With a further increase of , the equilibrium

state 1, * will also jump to ©, *, if O increases above [ .

s

u;

u;*

B

|
|
|
"

|

|

|

|
28

Iml‘n Imax

Fig. 7.7. The bifurcation diagram of the Caspian Sea equilibrium levels; stable equilibriums
indicated by circles and unstable by crosses.

The above said can explain the existing changes of the Caspian Sea water
levels. These changes occur by leaps from the low to the top level when the inflow

Q exceeds [, ; conversely, the high sea level drops abruptly to the low level,

when () drops lower than [ The talk here is about leap-like changes of the

min °

stable-equilibriums-caused-by-the-changes in the inflow (). As for the Caspian
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Sea level, its changes are far from of a leaping nature and it varies sufficiently
slowly, in accordance with the rate of transition to a new equilibrium state.




8 Exponential processes

A mathematical model. Half-decay and halving periods. Examples of ex-
ponential processes: reproduction and destruction; radioactivity; chain re-
actions; capacitor discharge; missile speed-up; retarding; radiation absorp-
tion; cooling; spreading of epidemics and rumour; growth of human popu-
lation, production and knowledge; arriving at and departing from an equi-
librium state, etc. Specifying a model: taking into consideration the satura-
tion and the explosive development. Phenomena of sudden crisis, collapse
and exceptionality.

From narrating some separate mathematical models, we now jump to describing a
sufficiently wide class of dynamic processes, the so-called exponential processes
and some other processes like logistic, explosive, etc.

The exponential processes can be of two types: exponentially increasing and
exponentially decreasing. These two types are described by the below very simple
differential equation:

dx
& _ 8.1
7 (8.1

An exponentially increasing process occurs for 4 >0, and for 4 <0 an expo-
nentially decreasing one. The exponentially increasing or decreasing process may
occur with respect to both time / and any other physical variable being different
from ¢ .

The solution of the differential equation (8.1) , taking the value x, for =0,
is of the form

xX= xoe'i’ (8.2)

and possesses the following remarkable characteristic property: upon the time in-
-1
terval 7 = |/u| In2 from any initial instant / one obtains
x(t+r7
__(____) =2 (8.3)
x(2)

provided that 4 > 0, and the process is an increasing one, and
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x(¢+7) _1

PN > 8.4
x() 2 EH

provided that 4 < 0, and the process is a decreasing one. This implies that to an
arithmetic progression of increasing values ¢+ nz(n =0,1,2,...) there will cor-

respond a geometric progression with the denominator 2 or 1/2. These properties
of the increasing and decreasing exponential processes are presented in figure 8.1.

A ®
Ax X !
Iﬂxa
e 84 ¢ I 2|x"1/4x0 t
{’_1_2 i In2 "
[A/ s VTR

Fig. 8.1. The graphical illustration of the exponential increase and decrease and
,accordingly, of the time doubling and the time of double decrease.

The basic thing that strikes our imagination in the exponential processes is their
fantastically fast, not yet humanly comprehended, increase or decrease with a
larger and larger velocity. Here, as a very vivid illustration of this may serve a
fairy tale about a king and a chess inventor. The king wishing to award the inven-
tor said: ”You may ask from me anything you like, even a half-country, even my
daughter”. But the chess inventor, being very timid, asked the king to give him a
tiny trifle, and, namely, to fill the first check of the chess board with a single
wheat grain, the second check with 2 grains, the third with 4, etc. The king was
astonished: “What trifle things you are asking!”, he exclaimed. “But let it be as
you wish”. Having approached only the middle of the chess board, the king’s ser-
vants suddenly found that the king’s granaries were already emptied. To have all
the 64 checks filled with grains, one would have had the amount of grains much
more than those existing on the entire planet.

The same fantastic increasing rate accompanies the limitless free reproduction
of living cells, microbes and viruses. Cells and microbes are halved every one-two
hours and,thus, upon 3-6 days and nights their number will be of the same order as
the number of wheat grains on all the checks of the chess board. As for viruses,
their halving period.is.much less than.a single hour. Hence, a catastrophe will oc-
cur in less than 24 hours, if their reproduction is not blocked. The same manner of
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acceleration and resource exhaustion is also specific for such processes as nuclear
and chemical reactions, avalanche-like and avalanching processes. Such processes
possess the halving time measured by the thousandth portions of a second. There-
fore, these processes behave like explosive, i.e. fantastic sizes are achieved in the
course of negligible portions of a second.

Similarly are spread the epidemics and rumour. In their initial stage, these pro-
cesses flow exponentially too. As a vivid example of our poor orientation in the
rate of growth of the exponential process there may serve our thoughtless answer
to the question about by how many hand shakes a resident of a small Russian town
is connected with the US President. Usually, in our hasty answer we suppose this
shaking chain to be too long, whereas in reality this chain contains less than 10
shakes. We can estimate this, if every person is assumed to shake hands with not
less than 100 persons in the course of his life. Hence, in a 5-person chain there

will be (if repeated shakes not considered) 10'° persons, i.c. more than the num-
ber of all human beings on this planet. This fact demonstrates, in particular, a
swift propagation of the epidemic during its short premonitory period and a
greater rumour spreading rate.

In the above examples, the rate for the growth of some magnitude will be the
more, the more will be this magnitude. Until the material, this magnitude is made
of, has been exhausted and the conditions of the growth of this magnitude retain
good, this process will retain its exponential nature and will be governed by the
below differential equation

ﬂ = AN ,
dr

where N is the number of the reproduced cells or viruses or the number of the
people fallen ill during the epidemic, or the number of the neutrons or molecules
reproduced in the nuclear or chemical reaction, or the number of the people,
whom the rumour or some sensation has approached, or the number of inhabitants
in our country or that of the entire planet, etc. To somewhat extent, this law covers
such situations as knowledge acquisition, studying foreign languages, since the
knowledge already gained makes its further acquisition easier and quicker. This
pertains both to knowledge acquisition by a single person and by the entire man-
kind. This pertains to the development of science, production, growth of pollution
and nature destruction.

The fast growth of the exponential process brings a sudden crisis and its disap-
pearance, resulting in fast collapse of the resources. Imagine that once you were
settling down in a tent on a bank of a beautiful lake where you were going to
swim. Let this lake be 16384 square metres. It is a big good lake of 200 metres in
length and 100 metres in width. On that day of your coming here there were some
green water-plants occupying 1 square metre only. They were not noticed by you
at all. Let their halving period during their reproduction be equal to 24 hours. In
the course of the first 13 days they did not disturb you, though during the last 3-4
daysithey caught youreyealreadyrAtilast, the 14-th day came and the entire lake
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was completely filled with green water-plants that made it impossible for you to
swim anywhere. The catastrophe occurred during a single night. Yesterday noth-
ing manifested the coming trouble and one half of the lake was free from water-
plants. This half makes up 8192 square metres and this square is sufficiently
enough for swimming. The square of good water was collapsed during 24 hours
but before this, during a 13-day period, the lake had good swimming square and
no troubles were expected.

The exponential growth of knowledge, science, industry, wealth and the like
reveals one more specificity. Let us explain it on the individual accumulation of
knowledge, the knowledge of foreign languages in particular. In the period of his
active life and favourable circumstances, each person accumulates his knowledge
exponentially, for the knowledge already acquired by him helps him to gain new
knowledge, i.e. roughly approximately we obtain

2 _uz .
dt

By virtue of this, the knowledge obtained is of a threshold nature, i.e. as soon as

the knowledge arrives at some threshold Z * its further acquisition will assume
an extremely fast nature and a human will be able to gain fantastic results during
his short life. Though, to have it happened, he should arrive at some threshold
reachable with great difficulties. Not everybody manages it to do. Though, those
who have overcome it, then strive to the top. This brings the situation that only the
limited number of people, a negligible portion of percentage, is distinguished by
the size and quality of their knowledge. Hence, there occurs a colossal gap be-
tween them and the remaining people. This fact can be considered as an explana-
tion for the phenomenon of exceptionality.

The next example touches on a suddenly arising crisis. It may be, perhaps, from
your own experience. For example, you were infected a week ago. For six days
you had a so-called premonitory period of the disease; the disease was not yet re-
vealing itself. On the seventh day you felt some cold, had high temperature and
your state was bad and even hard. Certainly, microbes or viruses in your organism
are not reproduced without obstacles. Your powerful immune system is fighting
against them, but it has not yet been fully mobilized and is, perhaps, insufficient to
suppress the infection. To do this, the organism needs some time. That is why the
exponential catastrophe is substantially smoothened for the time being; though,
exposed. The more weakened and unprepared your immune system is and the
more delayed will be its reaction to the disease, the quicker the number of patho-
gens and intoxication will arrive at their marginal quantities. After the first faint
features of the disease your body will assume the state threatening to your life.

In the end of the 18th century T.R. Malthus was the first to tell about the expo-
nential growth of the world population. He had a predecessor living yet in the 12th
century. It was famous mathematician L. Fibonacci who put and answered the
question: “How many pairs of rabbits are born yearly by one pair of rabbits?”

The exponential reproduction implies an absence of any limitations. Actually,
these limitations always exist (for example, a limit of resources) and may be sim-
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ply taken into account through introducing a negative quadratic term. Thus, the
corresponding differential equation

%zﬂx—axz (8.5)

will have the solution expressed by the so-called logistic curve depicted in figure
8.2.

t

L
E

Fig. 8.2. The logistic curve.

Here, an initial increase, near to exponential, is slowed down and constrained by
A

the limit approachable magnitude X, = — (see figure 8.2).
&

Many processes, being of exponential nature in their initial stage, are then
slowed down and come close to those represented by a logistical curve. This curve
determines the growth of world population, animals, industry, science, education
and many other processes.

There exist some other processes increasing even faster than the exponential
processes. For example, reproduction of insects where the size of posterity is de-
termined by a frequency of copulations which is, within a limited square, propor-
tional to the square of the number of its inhabitants, i.e.

dN
—=aN?* . (8.6)
dt
The solution of this equation
1
N=—:
N, —at

at the 1nitial condition
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N| =N,

t=0

unboundedly increases with ¢ approaching the final value ; this will corre-
0
spond to an explosive growth of the population, say, a well known growth of the

locusts (grass hoppers). The frequency of copulations within a limited area is pro-
portional to N 2 , because the probability of copulation of a single insect with an-
other will be proportional to N . Therefore, the total probability of copulation of
N insects will be proportional to N >.

The exponential nature of the growth, at least, at the initial stage, is typical for

the non-equilibrium departures from unstable equilibrium states. Let the system be
described by the below differential equation

i= f(x) 87)

and X = X * be its unstable equilibrium state. Figure 8.3 shows a small mountain
with the top point standing for an unstable equilibrium. When rolling down the
mountain, the point is gaining speed faster and faster.

Fig. 8.3. The unstable equilibrium illustrated in the form of a material point on the top of a
convex curve.

Let us introduce the new variable & under the assumption that
X=x*+& .
Then, having put this variable into the equation (8.7), we shall find that

§=fO*+) = fON+ (e +.,  f(xH)=0,



8 Exponential processes 89

where three dots denote the terms of the second and higher orders of smallness
with respect to & . On the initial time interval of the departure from the unstable

equilibrium (when ¢ is still small), we may approximately assume that

E=a¢

where 4= f'(x*)>0, ie. &£ is increasing exponentially, at least, within the
initial time interval.

Until now we described the exponentially increasing processes only. Now let us
turn to the exponentially decreasing ones. They are also numerous and various: for
example, hot tea cooling, discharging an electrically charged condenser and, in
particular, that of a TV electronic tube after a switch off; a decreasing of the emit-
ting intensity when emitting is done through a partially transparent medium; a
decreasing of the mass of a speed-gaining missile; a retarding of the descent upon
deploying a parachute; a perishment of the population under unfavourable condi-
tions, say, because of the sharp shortage of food; arriving at an equilibrium, and
many other things.

The exponential decrease implies a continuously decelerating decrease and it is
exercised so fast that the entire decelerating process will be always limited. It is
the very finiteness of time that was the very reason of why quick-legged Achill
failed to overtake a turtle, because he was running first a meter, then a half meter,
then a quarter meter, and so on, and not more than two meters in all. Achill was
not overtaking the turtle but, nevertheless, was coming closer to it very quickly, in
the sense that the distance to the turtle was shortened two times at first, then again
two times, and in total as much as four times, and then again two times, and in
total as much as eight times, etc. From the said it follows that the exponential de-
crease may be interpreted as a continuous arrival at the final value.

We are passing now to specific examples. Figure 8.4 shows a circuit for

Fig. 8.4. The electric circuit with a resistor and a capacitor.

the condenser of capacitance (' discharged by the resistance R . In accordance

with the Kirchhoff law, the differential equation for the condenser discharge is
written in the form
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. g
Ri=-4
==

or

d 1
a  rc?

Therefore, it is described by the exponentially decreasing process of the time be-
ing twice less and equal to

r=RCIn2

The time 7 is proportional to the capacitance C and the resistance R . With the

initial charge ¢ = ¢, we have

—t/RC

q(t) =q,e

The next example pertains to a parachute deceleration. Let us imagine that upon
arriving at the descending velocity v, the parachute was deployed and its descent

is retarded proportionally to its velocity. In accordance with the Newton law, we
obtain

my=-mg-—hv .

The solution of this equation is as follows

-h

y="E 4 (v, ~—m—g)e7t

h h

Therefore, the initial velocity v, (v, > 0) is exponentially slowed down to the

m
constant descending velocity equal to —h£ . This process is demonstrated in figure

8.5.

Up to now, all the exponential processes discussed were of time nature, i.e. they
varied exponentially in time. Now we will look at the processes which are also
exponential but not variable in time.

At present, only few are fond of reading Jules Verne’s science-fiction novels.
Though, there was time when his readers were absorbed in his books. In his fan-
tastic novels he foresaw a lot, though at times was mistaken. One of his vivid er-
rors was the described flight to the Moon on a cannon-ball. The flight was pre-
dicted by him, but on a cannon-ball — and it was an error. For Jules Veme it
seemed that the bigger the cannon, the faster it will eject a cannon-ball. But it is
notrabsolutelyssonTheregexistsyaglimitinggvelocity of ejection and it cannot be ex-
ceeded.
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Let powder (as was at Jules Verne) or some other explosive be used. Imagine

that its mass m , when exploded, will discharge the energy E per a unit of

chem
mass. This energy can transfer to this mass #m the velocity v (without a nucleus
mass taken into consideration). In the best case we shall obtain

I’}’IV2 E
2 =m chem >

i.e. the velocity of the ejected ball cannot exceed

v =./2E

max chem

This is an absolute theoretical limit for the velocity obtained when firing a can-
non. This limit is greatly less than the first cosmic velocity (8 km/sec).

Vo

Fig. 8.5. The time plot of the falling body when viscous resistance is available.

K. E. Tsiolkovsky was the first to understand that the same chemical substance
should be used in some other way and that this way may provide theoretically any
arbitrary large velocity. This way is the application of a missile jet engine. The jet
engine gathers traction by ejecting a gas jet in the direction being reverse to that of
the missile movement. Let the missile of the mass m have the velocity v and the
ejected mass move with the velocity ¢ (figure 8.6). The mass being ejected (dm )
gathers the velocity ¢ at the expense of the chemical energy produced by the
burnt propellant of the missile. Here, the entire chemical energy is assumed to be
converted to the kinetic energy. Generally speaking, this is not true. Though, for
our final conclusion, the fact that a portion of the energy is transferred to heat does
not weigh much. Thus, we obtain

2
dmc

=dE,.. . (8.8)
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where d E

converted into the kinetic energy of the gas outflow. That the missile, while
ejecting from itself in the reverse direction the mass dm , gathers a forward accel-
eration may be revealed and the value of this velocity gain may be calculated. This
calculation may be done with use of the law of energy conservation, i.e. through
equalizing the energies prior to and after the mass ejection.

chem 15 the loss of the chemical energy reserved in the missile and is

v+dv

dm
m-dm @ -

-ctv

Fig. 8.6. The scheme explaining how to derive a missile speed-up equation when
gas is escaping from the missile nozzle.

Prior to the mass ejection, the missile possessed the energy equal to

2
my
chem + 2

E

This energy included the chemical energy F of the missile propellant and

chem
kinetic energy of the missile movement. Upon the mass ejection, the general en-
ergy will include the reduced chemical energy, the changed kinetic energy of the
missile and the kinetic energy of the ejected gas mass dm . In accordance with
this, this energy will be equal to

2 RS
E. +dE. + (m+dm)(v+dv)"  dm(v—c)

chem chem
2 2

Equalizing the pre-ejected and post-ejected general energies, we will find that

(m+dm)(v + dv)* B dm(v —c)? B
2 2

Echem + dEchem +
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From this, taking into account (8.8) and naturally omitting the terms with dmdv,

(dv)2 of the higher order of smallness, we shall come to the below simple rela-

tion
mvdv +cvdm =0
or
dm 1
am _ (8.9)
dv c

The mass m of the missile will, thus, decrease in the way similar to the expo-
nential function of the velocity v

m=mye " ¢ (8.10)

As we want to find out how the velocity will increase with a decrease of the
mass, since it is ejected backward, it is natural to write the last ratio with use of
the Tsiolkovsky formula

m
v=cln—~ . (8.11)
m

With the velocity v expressed as the ratio of the initial mass #, to the mass

m , we obtain that the missile, via ejecting a greater and a greater portion of its
mass, will get a possibility to gain higher and higher velocities. Besides, with each
lessening of the mass two times the missile’s velocity will be increased by the

magnitude ¢ln2 . In principle, this regularity enables to gain any arbitrary large
velocities, but, since the remaining mass cannot be very small, the initial mass 71,
accordingly should be increased significantly. Hence, for travelling to the Moon,
no big cannon is needed (as to Jules Verne), but a big missile. Not simply big, but
an enormous one. From the ratio (8.10), it follows that the initial mass #, is the

exponentially increasing function of the velocity v

m, =me’’*

Here, the initial mass (with thé final mass given ) will be doubled at each increase
of the velocity by the magnitude cIn2 . Hence, in order to decrease the initial
weight of the missile, its final weight has to be decreased maximally. The final
weight is substantially decreased, if a multistage design of the missile is used.
During the flight, the utilized stages will be dropped down to have only the mini-
mally needed stage remained.
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Another example. The dynamics of the amount of the population NV, ie. the

value of the derivative N , is determined by the correlation of the birth rate B
and the death rate D . Thus, we have

N=B-D,

where B and D are functions of the quantity N and the external medium. With
the external conditions remaining unchanged and with natural simplest depend-
enceupon N (B =aN , D =bN), we shall come to the processes of the ex-
ponential reproduction or destruction, due to the sign of the magnitude
A=a-b.

Analogous to the population destruction is the radioactive decay resulting in an
exponential decrease of the indecomposable substance. The rate of the radioactive
decay is determined by the time of the half-decay. The less this time, the more
quickly vanishes the radioactive radiation being dangerous for humans.

How a partially transparent medium absorbs a radiation may be represented as
a destructive process only. Here, it is convenient to simulate the radiation as a
stream of the large number N of photons; the medium may be assumed to possess
some independent absorbing probabilities for each photon of the stream per a unit
of the covered distance. Using this interpretation for very large N , we obtain

v _
dt

This will bring us to the exponentially decreasing process, where a two-fold de-

crease of the radiation intensity will occur for the time A’ In2 .

It is through the exponential decrease of the radiation intensity that the pitch-
darkness in the oceanic depths is explained, in spite of the upper layers of the
ocean being illuminated sufficiently. Indeed, let the illumination drop as much as
two times per each 20 meters. On a fair and sunny day such a drop is not noticed
absolutely. Though at the depth of one kilometre, there will be darkness, since the

radiation intensity will be 2°° ~ 10" times less .

Such a model of the stream of particles can lead us to the exponentially in-
creasing avalanching process, if a single high-velocity particle runs into a gas
molecule and this collision gives birth to more than one particles of the same ve-
locities. Similar avalanching processes are observed, when cosmic particles are
coming into our atmosphere at the velocities being close to the light velocity.
These particles carry enormous energy.

Cooling a not so much heated body, say, a glass of tea or coffee, also makes up
the exponentially decreasing process. Indeed, if the temperature of the environ-
mental medium is taken as an origin, then the temperature 7' of the heated body
will be described by the differential equation
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dar

dt
because the heated body will return its heat into the medium approximately pro-
portionally to the difference of the temperatures in the body and the medium.

At last, let us note that all the processes of arriving at the equilibrium state (and
it is only in this manner that one must interpret a discharging of the charged con-
denser, a retarding of the moving body, death of the population, and cooling the
heated body) will possess the exponentially decreasing nature. This happens so,
because the movement equation, being linearized within the neighbourhood of the
equilibrium state, will, in the general case, coincide with the differential equation

for the exponentially decreasing process.
Therefore, for the one-dimensional process

dx
E—f(x),

with the equilibrium state X *, the deviation & from x * will be described by the

AT

equation

& -

— m x s

” f'(x*)¢
where, due to the stability, f'(x*)<0.

For the multidimensional case, the picture will be more complicated. The de-
creasing process will be of the form

LCie ™™ +ZD,e ™ cos(w,t +@,)

where A, and 4, are positive, i.e. this process is a superposition of the expo-

nentially decreasing and the exponentially decreasing oscillating components. It is
clear that a final arrival at the equilibrium will be described by the term of the

smallest value ﬂs or £/, . In this sense, it may be also interpreted as the expo-

nentially decreasing or the oscillating exponentially decreasing process.



9 Dynamics in coexistence of populations

The mathematical models for the coexistences of the types "predator —
prey", competition (opposition) and symbiosis. The phase and bifurcation
portraits.

The above cases touched on a limitless reproduction of the population. The repro-
duction was performed exponentially. Though, in reality, the population has vari-
ous relationships with other populations and inside itself. These relationships may
be of different types: “predator — prey” (antagonism), mutual assistance (symbio-
sis) and internal competition. In the simplest case, there exist only the interaction
of two populations. This type of interaction is the most decisive and essential,
whereas all the remaining types of interaction are secondary.

The first ecological model for interacting populations is the predator-prey
model constructed by Volterra and Lotck. This antagonistic model assumes that
the population of preys can exist independently and the population of predators
cannot; the latter exists only through eating the preys. Thus, with the predator not
available, the prey will be exponentially reproduced under the equation

X =ax,
whereas with the prey not available, the predator will die out. Thus, we have
y=-cy .

The predator eats the more preys, the bigger it is and the more numerous the
predators are. Hence, with the predator available, we obtain

X=ax—bxy . 9.1)

The quantity of the preys eaten will favour a reproduction of the predator, and,
therefore, we obtain

y=—cy+dxy . 9.2)



98 9 Dynamics in coexistence of populations

The differential equations (9.1) and (9.2) are the very famous and widely
known differential equations by Volterra and Lotck. These are the very equations
that have given birth to the theory of interacting populations.

As the state of the dynamic system described by the equations (9.1) and (9.2)
there will serve the quantities x (preys) and ) (predators). As the phase space

there will be assumed the octant X >0, y = 0. For y =0, the quantity x will
exponentially increase, whereas for x = 0 the quantity ¥ will exponentially de-

crease. The point x = y = 0 will be the unstable equilibrium state of the saddle
type. This follows from the fact that in the neighborhood of the equilibrium point
x = y =0 the terms, containing the product of small magnitudes X and ), may
be neglected. Hence, we approximately obtain

X=ax
y=-cy .

Except the equilibrium Xx = y =0, there is also possible the equilibrium

x=x%,y=y* where x* and y* is a non-zero solution for the equations
ax—bxy =0, —cy+dxy=0
Le.
x¥=cld | y¥=alb .

The type of equilibrium (x*,y*) may be found, as usually, through con-
structing its characteristic equation

a—-by*—-» —bx* B
dy* —c+dx*-A|
or
2+% 9
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. }ac
The roots of this characteristic equation are purely imaginary, i 73;

In the linear approximation, they will correspond to the center-type equilibrium.
This equilibrium, if the terms dropped in the linearization are now considered, can
become both a stable and unstable focus. In the given case, a complete analysis
reveals that the nonlinear terms will save the type of the equilibrium, i.e. the equi-
librium will retain to be a center-type equilibrium. A more specific analysis be-
comes possible, because the Volterra-Lotck differential equations can be inte-
grated. The Volterra-Lotck equation may be written as

dx dy

ax — bxy —cy+dxy
From here, separating the variables X and ), we obtain

(—c+dx)dx (a-by)dy
x - Y

’

upon integration we have

—alny—-clnx+dx+by=h ,

where A is an arbitrary constant. The last equation is the equation of the phase
trajectories. Each trajectory will be assigned its own value of the integrating con-
stant /1. To qualitatively construct the phase trajectories on the plane X, y will

be possible, if each phase trajectory is assumed to be constructed by projecting
onto the plane X, y the line

z=dx+by—clnx—alny= f(x,y)

of intersecting the surface by the plane z = & (Fig. 9.1).
The shape of this surface shown in figure 9.1 may be represented through the
following conclusion. On the axes X and ), we get f(x,y)=c and

f(x,y) = ©, with at least one of the variables, X or ), being increased. To
the minimum point of this surface z = f(x, y) there will correspond the equilib-
rium state ( x*, y *). All the rest phase trajectories will be the oval curves con-

tained in each other and encircling the equilibrium state (x*,y*). Hence, the
phase portrait obtained will be of the shape depicted in figure 9.2.
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Fig. 9.1. The geometrically interpreted construction of the phase trajectories in the Vol-
terra-Lotck model.

In spite of its simplicity, the Volterra-Lotck model reflects in a qualitatively
correct way the oscillating nature of the quantities X and y in the predator-prey

coexistence. This oscillating nature was exposed, for example, during the long-
time observations of hares and bobcats in Canada and in many other cases.

X

Fig. 9.2. The phase portrait of the Volterra-Lotck model.

According to the phase portrait, the fluctuations of population quantities will be
periodicybutstheysmaysoccurswithyvarious swings — from the zero swings to the
infinite ones. Though, as was noticed by J. Volterra, the time-average values of
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the quantities X and y usually retain fixed, equal to the coordinates x* and

y* of the equilibrium state.
This immediately follows from averaging over the period of the ratios

iza—by, Z=—c+dx ,
X y

since average values of their left-hand parts are equal to zero.
According to this model, neither the variations of the parameters @, b, ¢ and

d nor the disturbances, causing a variation in initial conditions, can damage the
unlucky fate of the preys — to become a food for the predators — until y turns to

zero. The most favourable thing for the preys is seemingly to remain in the neigh-
borhood of the equilibrium state, because at large swings the prey population (and,
by the way, the predator population as well) will arrive at the periods of very small
quantities.

When applied to an existence of humans (a prey) with a microbe or a virus (a
predator) (this application admissible with large qualifications only), this model
makes it possible to adopt some curious conclusions on how the predator-killing
medicines must be administered and how must not. First of all, a predator, if pos-
sible, has to be killed fully, i.e. if left even in small quantities it will be shortly
reproduced again, and possibly, in greater quantities. And so we shall fail to
achieve out target. If a full destruction of a predator is impossible, it is expedient
then to reduce its quantity to some extent in the top position of the phase point
(above the equilibrium) only, i.e. near its maximum quantity. A partial destruction
in the time of a small-size population will only lead us to a further great worsening
of the decease.

These are the conclusions possible to be adopted from the very simple Volterra-
Lotck “predator-prey” model. The model was further specified and made more
complicated. From the mathematical point of view the Volterra-Lotck model is not
satisfactory because a phase portrait may undergo substantial qualitative changes
in response to indefinitely small changes in the right-hand sides of its differential
equations. It means that even insignificant factors can result in significant changes
of the portrait. Thus there exists no basis to consider this model correct since ig-
noring secondary factors is inevitable.

Such an undesirable property of the Volterra-Lotck model is accounted for the
fact that its equilibrium is a centre-type equilibrium to which there correspond
purely imaginary roots of the characteristic equation; at the very insignificant ad-
ditions O(x, y) and &£(x,y) to the right-hand sides of the equations (9.1), (9.2)
the equilibrium may be replaced by a stable or unstable focus, and around it there
may arise closed stable periodic motions, which will essentially change the phase
portrait and accordingly the behaviour of the coexisting predator-prey population
following from it.
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With this drawback eliminated and if a predator’s satiation and prey’s struggle for
living sources taken into account, the model will then assume the form

X =ax— bxy — Bx?
1+ Ax
(9.4)
. dxy
=—cy+
Y Y 1+ Ax

For A=0 and B = 0 the model is reduced to the Volterra-Lotck model. The pa-
rameter A takes into account a predator’s satiation, i.e. that even at very large
quantity X of preys a predator cannot eat its preys more than some certain number

of them; whereas for A = 0 it is able to eat up infinitely many for x —> 0. The

parameter B > 0 takes into account a limited nature of living resources for prey
reproduction.

In contrast to the Volterra-Lotck model, to investigate the differential equations
(9.4) is already not an easy job. This investigation is better to be started from
eliminating some parameters. Now, they are six. It turns out so that they may be

T c a
reduced to two. Replacing the variables f =— |, x=—uy , y = ;)—v will lead

o d
the differential equations (9.4) to the form

uv )
—&u

Uu=u-—
1+ au
(9.5)

u

v=—w(l- ) .

1+aou
A study has revealed a qualitative shape of the model phase portrait to be depend-
ent only upon the positive parameters ¢ and & ; the parameter » produces no

) c cB
effects upon the portrait (& = Azi— ,E=—).

The search for a two-dimensional phase portrait (the variables # >0, v>0)
of these equations and for a bifurcation portrait includes some stages. First, subject
to search and investigation are equilibrium states. This stage prompts a possibility
of auto-oscillations. Further, there should be found the parameter domains
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0
@

¥

¥
Fig. 9.3. The parametric portrait for the improved “predator-prey” model.

corresponding to various qualitative structures of the phase portrait. As a result of
this stage, we arrive at the bifurcation portrait given in figure 9.3.

It consists of three domains, 1, 2 and 3. For each of them there is its shape of
the phase portrait shown in figure 9.4; here, the number stands for the number of
the domain of the bifurcation portrait.

At the parameters taken from the domain 1, the predator will perish; the prey

1
will retain only in the quantity #* = — corresponding to a stable equilibrium
£

state of the phase portrait 1 (Fig. 9.4).

With the parameters lying within the domain 2, the prey’s isolated existence
will become unstable and there will appear some equilibrium interaction between
the predator and the prey.

Upon coming into the domain 3 the predator-prey balanced coexistence is bro-
ken and it obtains an auto-oscillating nature.

Now, upon our brief description, we are coming to describing our investigation.

The equilibrium states are found from the equations

uy u

—su’ =0, w(l—

)=0 (9.6)
1+ au 1+ou

Here, there are 3 solutions:
l-a—-¢
» V= 2
l-« (1-a)
The first two equilibrium states occur for any positive & and & , and the last one

only in the domain 2 and 3, where 1 — & — &> 0 . On the boundary of the do-
mains 1 and 2 the third and the second equilibrium states are merged.

In order to study the stability of the revealed equilibrium states let us write
down the characteristic equation

HDu=v=0; 2yu=1/¢,v=0;and 3) u=
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1—2§u~1v +1a'uv2_/1 _1u
X(4) = +Z¢ (+aiu) +:m o,
- - —7(1- -A
» (l+au)* l1+ou 7 1+au)

in which # and v will be replaced with coordinates of the equilibriums being

AVY J\v

I O \/ ®

4]

16 ” e

Fig. 9.4. Phase portraits of the improved “predator -prey” model for the parameters from
different domains 1, 2 and 3 of the parametric portrait (Fig. 9.3).

checked for the type and stability. For the equilibrium states 1, 2 and 3 we se-
quentially find the following roots of this characteristic equation:
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L. A =1, A =-y.

2. /11=_1,,12=:Z(_“+_‘9"Q _
a+s

3. A,=—0ctiw.
a(l-a)

where O turns to zero on the boundary curve & = of the domains 2

l+a

and 3 (in the domain 2 it is negative, and in the domain 3 positive). By virtue of
the bifurcation theory, during the transition from the domain 2 into the domain 3
there should be born from the third equilibrium state a stable periodic motion or
the unstable periodic motion should vanish by getting stuck at it. To distinguish
which of the cases occurs is possible through calculating a sign of the so-called
Lyapunov magnitude. This process gives birth to a stable periodic motion (i.e. an
auto-oscillation) and accordingly there occurs the phase portrait 3 in figure 9.4 .

Justice demands to say that a strict realization of this approach needs also a de-
termination of whether there exists a possibility for complicated limit cycles to
appear. One can easily make sure of it by looking at them on a computer display;
all the above given pictures of the phase portraits were taken from the display.

We have thus analysed the mathematical models of interacting predator-prey
populations. Similarly, there can be constructed the models for two competing
populations and two cooperating populations. The two competing populations,
with internal competition within each of them also accounted, may be described
by the following form of differential equations

2
Xp =4 X —ap X, —apXx,

) 2
Xy = ApXy —dpX, —dyX)X

. . T
or , upon replacing the variables { = — , X, =—1u, , X, =—— U U, , by
a, ay, ay
the below equivalent form
= (1-u —su,)

(9.7)

uy = pu, (-, —&u,).
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Fig. 9.5. The parametric portrait for the model of the competing species.
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Here, as well as in the previous model reduced to the same form, the depend
ence upon } is not substantial, not affecting the quality of a phase portrait.
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If the substantial parameters &; and &, are used, then the bifurcation diagram

will contain 4 domains (1, 2, 3 and 4 in Fig. 9.5), to each of which there will cor-
respond its own shape of the phase portrait. These phase portraits are shown in
figure 9.6 under the same numbers which carry the associated domains of the bi-
furcation portrait. The general idea here is that among the competing populations
there will survive only such a population that produces greater pressing effects

upon other populations, which is counted in the parameters &, and &, (Fig. 9.6).

This situation occurs in the domains 1 and 2, where one of parameters &; and &,

is more than unity and the other less. In the domain 3 there occurs an equilibrium
coexistence. In the domain 4 there survives one of the populations, depending
upon the initial conditions.

In order to think these conclusions over, it will be not bad to have some knowl-

edge concerning the relationships between the initial parameters of the model a, ,

a,, a,, ,d, ,d, ,d, andthereduced & and &,

2

a,a a,a,
£ =202 £, =12
a1a22 a2a11

The following two models describe the cooperation between populations
known in biology as symbiosis. The first model covers the case when mutual as-
sistance constitutes a necessary condition of existence since when living inde-
pendently each population will perish. This model also describes an internal com-

petition within each population. With its initial parameters, this model has the
form

bx, x 2
X, = —a,x, + ————¢x,
1+ 4x,
(9.8)
. bxx
X, = —a,x, + —2 ¢ x,’
1+ 4,x,

As earlier all the parameters here are not negative. Here, only two shapes of phase
portraits are possible: the one when for any initial conditions the quantities of both

populations x; and x will tend to zero, and, thus, the populations will die out;

and the other shape of a phase portrait is represented by figure 9.7. In the shaded
part of the phase space, all the phase trajectories will tend to the coordinate origin

and this will mean death for both populations. At large quantities Xx; and X, of
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the populations, relating to the non-shaded part, there will be established a bal-
anced mutually beneficial coexistence. This equilibrium state is denoted in the

A X2

Xy

2
“ A

Fig. 9.7. The phase portrait for the model (9.8) of the two-species symbiosis.

phase portrait by the letter O. A substantial variety of dynamics of symbiosis of
the two populations is observed in the model, where each population can exist
independently, though its quantity must overcome a certain threshold — since a
small-size population will die out. Such specificity in the biological behaviour of
the isolated population may be represented by the model of the form

Xx=—ax(x-L)x-L,) (0<L, <L,)

(Fig. 8). Figure 8 shows the plot of the right-hand side of this equation and the

Fig. 9.8. The one-dimensional phase portrait for the one-species existence (the equation

(9.9) for b, =0).

associated phase portrait.
Ini"accordance with this; the mathematical model for the two-population sym-
biosis will be written as follows
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X =ax, (%, — L)L, —x) +bxx,
9.9)
X, = a,%,(x, — K )(K, —x,) +b,x,x,

Here, one of possible phase portraits (it, as well as others, may be displayed on
a computer) is depicted in figure 9.9.

X2
03 04

Xy
0_; i -

0,

Fig. 9.9. The two-species symbiosis phase portraits for the model (9.9).

In the symbiosis described, in accordance with the behaviour of the phase tra-
jectories, both populations can die out, or any of the populations can survive and
the other can perish; or, at last, both can enjoy coexistence at the quantities larger
than each separately.

Another possible case is represented in figure 9.10. In it, as well as in the pre-
vious cooperative model, possible only is the coexistence of both populations or
their mutual destruction.

We have thus considered several specific mathematical models simulating a
coexistence of two populations. The ideas laid in their foundations are natural and
simple but the conclusions made are sudden and instructive.

Could we expect that the predator — prey coexistence will lead to the birth of
auto-oscillations? Could we imagine that a competition between the preys will
favour the preys to save themselves from the predators? Could we think that in the
case of the coexisting competing populations the same internal competition (that
makes life more difficult) will favour a survival?

Less sudden, though also interesting is our conclusion on the fact that in the
case of the symbiosisthe populations'will survive only at sufficiently large quan-
tities.
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0,

Fig. 9.10. The phase portraits of the two-species symbiosis for the model (9.9).




10 Flow biological reactor

The simplest model of a biological reactor (a chemostat); a phase portrait;
optimization.

A flow biological reactor, a chemostat, represents itself a vessel filled with some
nutrient medium where microbes are reproduced. Its specificity lies in the fact that
its medium where this unceasing reproduction occurs is continuously replenished
with a fresh nutrient solution and simultaneously at the same rate some fluid with
microorganisms and substrata is discharged from the chemostat. A chemostat
medium is intensively stirred up so as to make similar the concentration of the
nutrient substrata and microbes in the vessel. Replenishing and picking up is
performed at similar volume velocities. The chemostat has constant temperature
sustained.

Our objective is constructing a mathematical model for the dynamics of this
chemostat, then studying this model and optimizing the chemostat operation with
respect to its controllable parameters.

Reproducing microbes in some nutrient medium of the chemostat looks like a
reproduction of a predator with due account of its satiation. In accordance with it,
the reproduction rate will be assumed to be proportional to the mass of microbes
x with the proportion coefficient of the below form

HnS

= , 10.1
K+S (10.D

7

where S is a concentration of substrata in the chemostat, and £, and K are
parameters. Let the nutrient substrata supplied into the chemostat be of the
concentration S, and the incoming volume rate be equal to [ . It is clear that the
subsidence of the nutrient substance is proportional to the velocity of microbe
reproduction. The nutrient substance is delivered and the chemostat is discharged

at the constant rate ). According to the above said and making use of (10.1), we
find that

S D

X = X
K+S V
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: lu S
VS =D(S, -8 )— 2" x|
(50=5) K+S

where V' is a fluid volume in the chemostat. Now, let us introduce new

parameters — D instead of D/} and [ instead of [//V ', write the above
equations as

K+S
(10.2)
. lu S
S=D(S —8)—“m=
(S0 =5) K+S

and start studying them.
The phase space of the chemostat, more exactly, that of its mathematical model

(10.2) is the first octant X > 0, S >0 of the plane x, §. Besides the trivial
equilibrium x =0, S =, there exists one more equilibrium determined from

the equations

S peo, DS, -8 )t
K+S K+S

X =

It is directly found that its coordinates X * and S* are equal to

st=—KP s[4, - D)S, ~KD)I" (i, ~D)*  (103)

M =D

To these values S* and x * there will correspond an equilibrium, if they are not
negative, i.e. if the below inequality holds

DS_/JL‘SL.<"I

10.4
K+S, " (164)

or, in other words, if the point (S, , D) is located in the domain depicted in

figure 10.1.
The stability of equilibriums is determined by the roots of the characteristic
equation
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AA) = ( +K)l -0, (10.5)
(K+S)

where the notation of (10.1) is used, S and X are the values of the coordinates of

the equilibrium under study. For the equilibrium x =0, S = §,

ﬂm ______________

x# §*>0

Ss

-
E

Fig. 10.1. The domain for the existence of the chemostat equilibrium ( x*,§ *) in

the parameters S, and D.

the roots are real and of different signs; for the equilibrium x = x*, §=S5%*,

determined by (10.3), the coefficients of the quadratic equation with respect to A
(10.5) are positive; hence, it is stable. The associated phase portrait is given in
figure 10.2.

It is very simple: any phase point X, S (X > 0) asymptotically arrives at
the equilibrium of the coordinates S *, x *. According to (10.2), the chemostat
parameters are &, ,K,D,S,,/; besides, the values of the parameters D and

S, may be changed, they are regulared. It is better to vary them so as not to

disrupt the stable functioning of the chemostat, i.e. to obey the conditions (10.4)

and naturally they should be changed so as to maximize Dx * . From (10.3) it
follows that
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Dx* = D|(u, - D)S, —KD]I"" (1, — D)™ =
(10.6)

DS, KD’
I Il(u,-D)

AX

S
\

So

:

Fig. 10.2. The phase portrait of the chemostat for the parameter values of S, and

D from the equilibrium existence domain depicted in figure 10.1.

D§*

|

|

|

.
Dmax

Fig. 10.3. The dependence of chemostat productivity upon the discharging
rate D.

For S, chosen, a2 maximum over D is attained at some D(S;) < 4,
D(S, ) being an increasing function of S;. That is, S is better to be chosen as

large as possible; at S, chosen there exists the optimal discharging rate D.
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This very fact is explained in figure 10.3, where there is shown the plot for
microbe reproduction rate DS * as a function of the discharging rate D . The
point where this plot intersects the abscissa axis has the coordinate

4, S, (K +S,)”"; therefore, after this point the plot becomes physically

senseless, since the inequality (10.4) for the chemostat functioning is not obeyed.




11 Mathematical model for the immune response
of a living organism to an infectious invasion

The simplified phenomenological model in the form of the fourth-order
differential equation system for the immune response of the organism to an
infection. Basic variants of the disease progress, its dependence upon
parameters; the extent of the infection and the treating counteractions.

The animal and human immune systems are very complicated. Complicated and
diverse is their structure, also complicated and multi-variant are their responses to
the attack by infection. Their counteracting facilities are complicated and
multisided as well. A contemporary description of the immune system occupies a
pair of volumes, and a lot still remains untouched and unknown. Alongside with
this, the immune system, whatever complicated it is, is responsible for
counteracting and destructing a foreign infection intruded into the organism and
harmful to it. In general notions, these counteractions against the infection and its
harmful effect become possible to be described, with omitting details of how this
actually occurs.

Thus, there exists some infection tending to be reproduced and it is attacking an
organism suppressing its living viability. There exists an organism trying to
destruct this infection, exerting initially its counteractions and arranging some
supplementary counteraction as soon as this infection is spotted. A high-speed
response of the organism and its efficiency are dependent upon its inherited
features, the “life experience” acquired and also upon the state of the organism
and its reserves for the moment.

So, despite all the complexity of the immune response to an infectious attack
there arise the following three fundamental factors: the infection; its reproduction
and its infecting of the organism; and the counteraction of the organism and its
potential counteracting capabilities dependent upon its state. Quantitatively, these
factors may be represented by three magnitudes — X (a quantity of the infection),
Y (an extent of the organism counteraction) and z (a potential of the organism).
Besides its quantity X, any infection is characterized by the rate of its
reproduction within the organism environment and by its suppressive action upon
the organism. As for the counteraction, it is characterized by its extent y and its
counteracting efficiency, fastness and the replenishing rate, which depend upon
the organism and its potential z .

All the above said makes it possible to describe the dynamics of the immune
response — the variation of the magnitudés x, y and z - by the following four

differential equations
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PR e
1+ ax

_ by for x<X,

I+ax
. bxy -
y= _1+xy+W:K for x=X, (11.1)

0

for y=0 and K <O

v+ w=Bz(2z —z,)(x + fr?)
c(z—-z,) for z>0 or z=0and F >0
z=9 l4+m
0 for z=0 and F <0

—dy-e=F

In the equations (11.1), X, is the threshold of the organism sensitivity against the
infection; 7 is the time delay of the supplementary immune response. The extent
of this response will depend upon the infection quantity X and the organism

potential z . For B = (0, this dependence upon x will be linear; for B >0, it

will be a forced one; for E < 0, it will be, on the contrary, a reduced one. The
last equation in the system (11.1) describes the variation of the potential Z ; here,
we have 0 < z < z,. The first term in the last equation (11.1) will be the rate of

replenishing the potential z till its extreme value z,; the second and third terms
will be the potential expenditures for the immune response ) and for the needs of

the organism itself. Converting z to zero is here understood as the complete
organism exhaustion bringing about its destruction.

The four equations (11.1) involve 13 parameters. The parameter 4 may have
any sign: A <O will indicate that the infection introduced into the body is
perishing; A > 0 will imply that the infection is being , nevertheless, reproduced,
though this reproduction is hampered by the organism counteraction ) . Though,
this counteraction may be not available. Further, the case A > 0 is possible. All
the other parameters, except /7, are positive. The process of the growth and the
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dynamics of the counteraction y against the infection x are described by the last
three equations.

The model (11.1) is rather complicated for studying; though, it may be
sufficiently simplified by making use of the variables X and y only. It is the

more so as the role of the rest equations is rather evident and may be mentally
accounted and understood. This simplified model will be of the form

P S A %

1+ax
_ by for x<X,
1+ax
V= _1bxy +B(x+ A=K for x2%, (11.2)
+ax
0
for y=0 and K <0

The equations (11.2) differ from (11.1) in that that the magnitude B now
becomes constant, while in the equations (11.1) it varies in accordance with the
last two equations. A formal jump from the system (11.1) to (11.2) is possible by
setting 7 =0 and assuming z to be constant. The magnitude 7 > O describes
the rate of the increase of W from zero to the extreme value

Bz(2z -z, )(x + sz) ; B in the equations (11.2) is equal to B z(2z — z,),
with z assumed constant. Thus, the role of the last two equations in (11.1) may
be accounted as the variability of B in the equations (11.2).

In the simplified equations (11.2), the number of the parameters may be
reduced by scaling the time ¢ and the variables X and ). Upon this, these

equations will assume the form

i=x- 2yt
l+x
by for x<x,
1+x
b
y = ~1—%+Bx(1+/)5c)=K for x2x, (11.3)
0
for y=0 and K <O
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Let us understand here what will be obtained from the simplified model (11.3), if
at first we assume &= £ =0. In this case, there will remain only the three
parameters, X,, b and B . Here, the two significantly different cases b>B

and b < B are possible. The second case (b < B), in its turn, will be splitted
into other two cases, b <1 and b > 1. As a result of this, we shall obtain the four
different phase portraits depicted in figure 11.1.

C

Fig. 11.1. The phase portraits of the simplified model (11.3) for ﬂ =&=0 and for

ab>B,bb<B and b>1,cd b < B and b <1. A is the domain of the initial
conditions, in which a recovery takes place. In the cases ¢ and d , beyond the A-domain the

infection will retain at the sensitivity threshold X, and a bacilli-carrying will take place.
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As seen from figure 11.1, in the case of b > B the organism will escape from the
destruction only at the initial conditions in the domain A, i.e. at its sufficiently
high initial counteraction y . With the initial insufficient counteraction y , the
organism will perish (i.e. X will increase infinitely and this, due to the equation
(11.1), will yield the nullification of the potential z ). This even will occur when
the initial quantity of the infection is very insignificant. On the contrary, for
b < B, the organism will never perish. Though, the counteraction may either
fully destroy the infection (the domain A and the arrival of the phase point at one
of the equilibriums x = 0, y > ¥ *) or may retain the infection at the sensitivity

threshold (the entire positive octant , except the domain A ), because of the phase
point having arrived at the stable equilibrium O . With the initial conditions lying
in the domain A, a complete recovery of the organism will be accompanied with
a single or , perhaps, some aggravations (Figs. 11.1b and c). How vividly these
aggravations are expressed will depend upon the infection quantity X and upon
the initial value of the immune counteraction y . A bacilli-carrying in the organism
and an equilibrium coexistence with the infection occurs via an oscillatory arrival
at the stable equilibrium O (Fig. 11.1c).

Figure 11.1 makes it possible to observe the consequences of the decrease of
the infection quantity X (for example, with the help of antibiotics or other
medicines), if it is supposed that this will exert no sufficient effect upon the extent

of the immune response, i.e. upon the magnitudes b and / in the equations

(11.3) and the value of ). In the case of b> £ and y > y*, a sufficient
decrease of x will result in a faster recovery or will even save the organism.
For y < y*, the above recovery will be also possible but only upon complete

destruction of the infection (X = 0). Here, this recovery is of an unstable nature —
the smallest infection may cause a repeated disease. It should be also noted that in
the case of y > ¥ * the infection should be completely destructed, otherwise, the
disease, upon some temporal amelioration, can revive and become even more
threatening than earlier (Fig. 11.1b). For the case b < B, the effect of such
medical therapy will be small and always not obligatorily positive, since the
therapy may lead to a cohabitation with the infection. Though, it will make a flow
of the disease easier. Alongside with it, it should be remembered that a
considerable and prolonged exacerbation (through which, due to figures 11.1b and
¢, a recovery may come) may not actually occur, due to the neglected decrease of
the potential z that will cause a decrease of the magnitude B in the equations
(11.3). We should also mind one more thing: in accordance with the complete
model (11.1), we initially (i.e. at the instant of the infection) have B = 0 ; then the
magnitude B reaches the value we consider. Besides, B will increase during the

time interval of the 7 -order, only after X having exceeded X .
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The above given figures of the phase portraits, as a rule, demonstrate a need in
the externally introduced increase of ), ie. a need in the immune system

stimulation. In general, this usually quickens the recovery and allows to eliminate
a transition to the chronic infectiousness. It will be also seen from below when the

role of />0 is exposed. Nevertheless, the most important conclusion (except the
most need of providing b < B)) is the expediency of sustaining the initial value of
y greater than the value of ¥ * (see Figs. 11.1).

Indeed, if at the initial moment, prior to the infection, the immune system is in
the equilibrium x =0, y >0, then for y < y*, due to the instability of the
equilibrium, even insignificant increase of X will result in a disease, whereas for
y > y* the infection will be destroyed and a new similar equilibrium state will
appear. The counteraction ) may decrease because of the absence of the

asymptotically stable equilibriums x =0, y > y*. Conversely, an existing

cohabitation with the infection will make the equilibrium state () asymptotically
stable, and in this sense this will protect the organism against the second infection.
Certainly, it happens so only for the parameters b and B being invariant; if these
parameters vary, then this infection , conversely, may initiate the second disease.

Fig. 11.2. The shape of the phase portrait for the simplified model (11.3) for x, =1.0,
b=1.0, B=0.9, ﬂ= 0.05 and &=0.01. The initial conditions lying in the

domain A bring a recovery; if beyond this domain, then a chronic disease (the stable

equilibrium state 01 ).

Now, let us see what new may be brought by the parameters /£ and &, earlier not

taken into account (£ = Z = 0). Here, we restrict ourselves to illustrating only
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some phase portraits taken from the computer display. The phase portraits in
figures 11.2, 11.3 and 11.4 demonstrate an importance of the forced immune

response ( £/ > Q) for the very unfavourable case, b > B.

Fig. 11.3. The shape of the phase portrait for the simplified model (11.3) for X, = 1.0,
b=0.8 ,B=0.5 s ,6’ =0.2 and £=0. The equilibrium state 01 is unstable and

for any initial conditions this brings a recovery.

y*

Fig. 11.4. The shape of the phase portrait for the simplified model (11.3) for X, = 1.0,
b=09,B=09, ﬂ =0.5 and &£ =0.1. The initial conditions when lying in the

domain A bring a recovery; if beyond this domain, a bacilli-carrying.

Herespeverythingswillvendpupswithgay chronic disease, a bacilli-carrying or a
recovery. Of course, a long chronic disease can substantially decrease the potential
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z and a resultant decrease of the magnitude B . All this may lead to fatal
consequences. In figure 11.5 there is given another variant of the

Xp
Fig. 11.5. The shape of the phase portrait for the simplified model (11.3) for x, = 1.0,
b=0.96, B=09, £ =0.05and &=0.01. The initial conditions when lying in

the domain A bring a recovery; and when beyond this domain, a periodic progress of the
disease (the auto-oscillation 1").

Fig. 11.6. The shape of the phase portrait for the simplified model (11.3) for x, = 1.0,

b=05, B= 2.0, ,6)= —0.1 and £=0. Being within the A - domain implies
arecovery; beyond it death.
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immune response speed-up (& > 0), for which the disease can flow with the

periodically repeated relapses (the auto-oscillation I'). What a weakening of the
immune response ( £/ < 0) can bring is shown in figures 11.6 and 11.7; here,

despite B > b a lethal outcome is possible.

i _//"/ S

k- ds

AN,

Xp

Fig. 11.7. The shape of the phase portrait for the simplified model (11.3) for X, = 1.0,

b=0.8, B=1.0, f=-0.2 and &£ =0). Being within the 4 - domain implies
arecovery;beyond it death.

The immune response may be weakened not only by £ < 0 but also by a drop of

the potential Z , due to the last equation of the system (11.1), which was left out
of account in the simplified system (11.3).




12 Mathematical model for the community
“Producers — Products — Managers”

Possible kinds of phase portraits. Evolution of the community with the
growth of technologies and its dependence upon other parameters.

The human society is extremely complicated, each person in it is an entire world,
his behaviour is many-sided and unpredictable. The relations between people are
of the very complicated nature. Besides, in the human society there exist numer-
ous systems, such as a governmental system (a state system), a system of man-
agement, a distributing system, finance, industry, consumptive establishments,
transport, communications, educational and medical establishments, etc. To de-
scribe all this mathematically seems impossible. This is just really so. However,
one can try to describe, at least, some aspects of this unspeakably complicated
human community, i.e. some of its peculiarities. For example, for his living man
needs to get food; and to obtain it efficiently he needs management. Also, man
shall not live by bread alone. He needs a shelter, a family, production tools, enter-
tainments and pleasures. When getting his necessities of life, he starts to clash
against other members of his community (society) demanding their own necessi-
ties. Nevertheless, the members of the community have to unite their efforts in
order to more efficiently achieve what they want to achieve. In such a community,
let us distinguish its three basic components — producers, products and managers.
The producers are the immediate manufacturers of the products; the managers
produce no products, though promote their production; the products imply the
things needed for humans’ living, i.e. what man eats and utilizes.

Let us specify these chosen aspects and denote them as the magnitudes x, y

and z, i.e. as a quantity of the producers, the managers and an entire quantity of
the products the community has available for use. The producers and the managers
compete between themselves, and also within their own groups. Nevertheless, the
producers produce their products together; and this production can be promoted by
the managers. The producers are immediate feeders for the managers and them-
selves. Thus, there exist competitive interrelations, natural reproduction and a
joint production. The efficiency of this production is determined by the level of
the technologies available in the community.

Figure 12.1 shows the links and the cooperation existent between the producers
X , the managers ) and the products z . Here, each arrow indicates the action of

the variable, from which the arrow is outcoming, upon the variable at which the
arrow is arriving. For example, the arrow running from the variable X to the vari-
able z mmplies that the fluctuation rate of the amount of the products z will de-
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pend upon X, i.e. upon the amount of the producers. Such arrows will be only
two: one will imply that the variable x produces the products z; the another
similar arrow will indicate that the producers utilize these products. The arrow
running from z to x will imply that the fluctuation rate of x is dependent upon
the products z available. All the arrows from x, ¥, z to Z will indicate that

the fluctuation rate of the accumulated

Fig. 12.1. The scheme of influences in the “producers-products-managers” model.

products z will depend upon x, y and z . The scheme discloses no specific

dependences and mutual links; it exhibits only their presence and our wish to ac-
count them in our model. It is clear that to account them in some precise fashion is
very difficult. With the variables x, y and z aggregated it is impossible. Here,
we restrain ourselves to their rough qualitative consideration described by the
following system of three differential equations

x=(a-bx—-Ily+cz)x

y=(d-ey+ f2)y (12.1)
F:g1+£’y X h—y for z>0

z= l+e,y1l+0z or z=0 and F >0

0 for z=0 and F <0

The above system is the mathematical model suggested by us for simulating the
community “producers — products ~ managers” (the PPM-community). In this
model, very many things are left beyond our consideration. Now, let us see what
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dynamics of the model this fact will lead us to. Let us describe again and in more
details our general ideas making a basis of this model. The fluctuation rate of x is
assumed to be generally proportional to x, with the proportionality coefficient

a —bx —1Ily + cz taken as decreasing with the growth of x and y and as in-

creasing with the growth of z . Such assumptions are supposed to reflect the in-
ternal competition among the producers x , the pressure exerted upon them from
the side of the managers y and the managers’ promotion for the production of the

accumulated products z . Without accounting these influences of the variables x ,
y and z upon the fluctuations of x, the first equation of the system (12.1)

would have assumed the form
X =ax

that would express an unlimited reproduction of the producers.

The similar considerations were laid into the second equation of the system
(12.1); though here, the producers’ pressure upon the managers is assumed to be
absent or negligible. Possibly, it is usually not so but, if needed, it will not be dif-
ficult to take this aspect into account. While the producers for z = 0 are able to
some extent for an independent existence, the independent existence of the man-
agers is excluded. Therefore, the sign before the coefficient d is given negative;
accordingly, the “isolated” managers will be described by the differential equation

y=-dy

that implies their destruction.

The third equation simulates the accumulation of the products in the course of
their production and consumption. The products are utilized by the producers and
managers. The products are subject to depreciation; they are broken down them-
selves and produced by the joint efforts of the producers and managers.

The extent of promoting the products production by the producers and manag-
ers is different: the producers produce the products immediately, while the manag-
ers promote (or hamper) this production. Accordingly, the right-hand side of the
differential equation for z involves three terms: the first term describes the prod-
uct production rate with due account of such aspects as the increasing difficulties
of the production, a growth of the volumes of the products, an amortization of the
products (their becoming outdated); the second and the third terms represent a
consumption by the producers and managers, respectively. The products con-
sumption by the producers and managers is assumed to be proportional to X and
y . As for the production, here the problem is more complicated. The production

rate is assumed proportional to the number of the producers x with its propor-
tionality coefficient. This coefficient includes, as multipliers, the community’s

. o Orey) .
technological level g, the magnitude ———— describing the influence of the

(1+ &)

managers » upon the production, the multiplier (1+ JZ)™' that decreases with
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the increase of z . This multiplier is incorporated to simulate an amortization (de-
preciation) of the accumulated products and the difficulties brought about by the

&

increase of the volumes of products. For —L >1, the managers are thought to
£
2

promote the production within the interval from 1 to i; conversely, for —gl— <1
& &
they will hamper it within the same limits.

In our model, the concepts of the producers, the products and the managers are
aggregated, i.e. these components do not account their possible complicated and
multisided differentiation. For the ancient community, under the products there
were implied the first consumer products, and, possibly, a shelter. In a more de-
veloped society, these things were also augmented with the hunting tools, cattle-
breeding and land-cultivating tools covering the cattle itself and the land. In the
contemporary society, the products cover an entire aggregation of the material and
intellectual wealth of the society. In our case, the variables x, y and z are in-

terpreted by us in an averaged and generalized manner and are associated with the
productive and public activities reflected in the productive and competitive inter-
relations.

Such generalized, averaged and fuzzy definitions of the variables X,y and z

will naturally bring some dissatisfaction. Much is left out not specified, not differ-
entiated but the numerous specifications, if injected by us, may kill the model’s
simplicity and generality. That is why let us not be so strict. Perhaps, this model
still describes something; possibly, the most significant. Let us first see what it
will bring us and later on formulate our opinion upon it.

Any model is defined by a large number of parameters; in nature these pa-
rameters vary, and not slowly; at times they fluctuate very fast. Their behaviour
depends in a complicated fashion upon the current and the past states of the soci-
ety. This is their life in reality. Though, in the model they are assumed constant.
The analysis of the model may reveal the events occurring at this or that fixed
values of the parameters. It may also show how the model’s behaviour varies in
response to the parameter variations.

How the current values of the variables X, y and z affect the model parame-

ters will depend upon whether the contemporaries of this model understand the
laws of the dynamic development of the society they live in, what their actual
thinking about this society is, what management system is used in the society,
what morals, ethic, beliefs and breeding of the members of this society are. It is
also clear that the nature of the dependence of the parameters may be strongly
affected by the news about the community obtained as a result of the study of the
mathematical model of this community. All these things are very difficult to be
accounted; therefore, we restrain ourselves to a study of the model at different
constant values of its parameters. All the rest will be left to our intellect.

In spite of its simplicity, to study this model is far not so easy, since it is three-
dimensional and involves a lot of parameters. In our case, studying its dynamics
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on a qualitative basis is reduced to creating the phase and the bifurcation portraits.
The phase portrait is three-dimensional and can be drawn. As for the bifurcation
portrait, things here are more difficult with it. Only common representations of
this portrait can be obtained. Even a large reduction of the parameters will still
leave not less than nine. Thus, we think it more comfortable to retain 13 initial
parameters.

The possible types of the phase portraits and their dependence upon the number
of the parameters have been mainly revealed thanks to the old-fashioned labour-
consuming analytical research. Visualizing the phase trajectories on a PC display
was also of some help.

We have managed to reveal the following. One of the basic parameters respon-
sible for describing the structure of the PPM-community is its technological level
£ . In accordance with this level of technologies, all the communities may be di-

vided into the three types — a low-technology community, an middle-technology
community and a high-technology community. The technological level will be

low, ifg<h;midd1e,ifh<g<h(1+§—j{—);andhigh, ifg>h(l+§%).

The phase portraits for the low- and middle-technology communities will also
depend upon the magnitudes &, and &, describing the managers’ impact upon

the productive efficiency. For & < K(&,), where K(&,) depends also upon

the rest parameters, it will become possible to create the phase portraits presented
in figures 12.2 and 12.3. The first of them represents a low-technology commu-
nity, where only the producers without any accumulated products and without

Fig. 12.2. The phase portrait of the PPM-model for g < h, when the globally stable

equilibrium 01 holds no products and managers.

managers have remained — all the produced has been eaten. The second portrait
shows a middle-technology community where only the producers with accumu-
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lated products are living. The states, at which the managers exist, vary in such a
way that the managers vanish with time. As for the low-technology community,
the accumulated products vanish as well.

Fig. 12.3. The phase portrait of the PPM-model for /4 < g< h(1+ od/ f ), when

the globally stable equilibrium 02 holds no managers.

If the managers are able to substantially increase the productive efficiency so
that & > K(&,), then the phase portraits will assume the form shown in figures

12.4 and 12.5. In this case, alongside with the preservation of the previous stable
communities of the types “producers” or “producers — products”, there may also
arise a community with the accumulated products and managers, ie. the
PPM - community.

The PPM-communities can be stable and unstable. All this will lead us to four
types of the phase portraits depicted in figures 12.4, 12.4a, 12.5 and 12.5a. Here,
stability takes place for A > 0 and instability for A <0 .

An unstable community may be thought to be arising from a corresponding sta-
ble community, as a result of the equilibrium O (related to the PPM-community)
having lost its stability, because of the stable periodic motion I born from this
equilibrium O. The periodic motion I" may lie entirely above the plane z = 0
of the complete exhaustion of the accommodated products and also may contain
the part lying on the plane z = 0.

The model for the high-technology community with the technological level g

always assumes two equilibrium states, O, and O, . The earlier stable equilib-
rium state (J, corresponding to the “producers — products” community becomes

unstable. There appears a new equilibrium state, O, .
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Fig. 12.4. The PPM-model phase portraits: a the two stable equilibrium states, 0] and
04 whose attracting domains @ , and () , are separated by the separatrix surface S of
the saddle equilibrium 03 ; b one equilibrium, 01, is stable and the other, 04 , having
become unstable, has given a birth to the stable periodic motion, I ; their (of 01 and 1)
attracting domains @ | and @ , are separated by the separatrix surface .S of the saddle

equilibrium O 3

Fig. 12.5. Here, the phase portraits are similar to those shown in figure 12.4 but the stable
equilibrium state 01 , holding only producers, has been replaced with the stable

equilibrium state 02 , where only managers are absent.
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Depending upon the sign of the magnitude A, this state will be stable or unstable
— the first occurs for A > O and the second for A < 0. Being locally stable, this
equilibrium state will be stable also globally and will describe the PPM-
community. With the magnitude A changing its sign and with the equilibrium
state having lost its stability, this equilibrium state will give birth to the stable pe-
riodic motion I". Its stability will also be global and this motion will correspond
to the PPM-community. As earlier, this periodic motion, pertaining to the unstable
auto-oscillating PPM-community, will lie above the plane z = 0, but also can
hold some components lying on the plane z = 0.

The phase portraits, constructed according to the above descriptions, are shown
in figures 12.6 and 12.7.

Fig. 12.6. The phase portrait of the globally stable equilibrium PPM-community.

Fig. 12.7. The same as in figure 12.6 but the globally stable equilibrium community
is replaced here with the auto-oscillation community.
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Besides these qualitative differences, it may be noticed that a stable or an un-
stable equilibrium community, or rather the equilibrium x* # 0, y #0, z*¥# 0
relative to it, may behave itself in a different way for an unlimited growth of the
parameter g . The magnitudes x* y*, z* either grow infinitely or remain re-
strained. The first takes place for ce —[f >0, the second for the reverse ine-

quality.
The above described equilibrium states and periodic motions entirely lie within
the parallelepiped defined by the inequalities

0<x<4, 0<y<B, 0<z<(C |
where finite 4, B and C are determined by the inequalities
gmax(Lg /&,)-1+C)h<0
—-d—-eB+ fC<0
a—-bAd+cC <0 ,

because through its sides X =4 , y = B and z = C the phase trajectories are
coming inside it.

Of some interest for us are the quantitative values of the coordinates x *, y *

and z * respondent to the stable equilibriums for the stable communities. These
values are easily calculated for the "producers" and “producers — products” com-
munities as below

x*=£,y*=z*=0 . (12.2)
b
Accordingly ,
p=d,ce-n o0, =8Py
b Obh oh

For the PPM-community, to find the coordinates x*, y*,z * is more compli-
cated. These coordinates are found in the following way: first we find the maximal
positive root ¥ * of the equation



136 12 Mathematical model for the community “Producers — Products — Managers”

l+gy a,+a,y

—ha, —(ha, +k)y=0 |, 12.4
l+&,y1+0b + b,y = (hay )y (124
where
a1=£+—c—c£, a2=£—£, b1=i, b2:—e— :
b bf bf b f

Then, x*, y* are determined through the formulas:

*=a +a,y* , z¥=b +by* . (12.5)

For

g <h(l+ %) (12.6)

the equation (12.4) will have either two positive roots or no one. The roots will
merge at

& =K(&) ; (12.7)

for & <K(&,), they will not exist.
For the condition

g>h(1+éd;—) , (12.8)

the equation (12.4) will have one and only one positive root.
Stability of the equilibrium (x*, y*,z*) where all coordinates are different

from zero and y * is a maximal root of the equation (12.4) will occur if the below
inequality holds

A = (ey * +bx*)(bBx * —Afy * +eBy * +bex * y*) —
— (bkfxc* y* +Ikfic* y** —cekx** y**) >0 , (12.9)

where
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— * * %
d=g & 522 x B:§(hx +ky*) |
A+ e&,y*) 1+ 1+o0z*

With A decreasing at the instant A = 0, the equilibrium state (x*, y*,z*)

will give birth to the stable limit cycle I".

Now, let us sum up the results discussed. They are diagrammatically presented
in figure 12.8.

The diagram also holds the numbers of the pictures of the related phase por-
traits. Let us comment on the diagram.

N

& <k &>k
Vg
g <h g <h
Figi 12.2 Fig. 12.4a, A > 0; Fig. 12.4b, A <0
h<g<h(1l+5d/f) h<g<h(l+5d/f)
Fig. 12.3 Fig. 12.4¢c, A >0; Fig. 12.4b, A <0

e

g>h(1+68d/f)

N

A4>0 A<0
}g- 12.5 Fig. 12.6
ce—-1f<0 ce-1lf>0
of limited of unlimited
development development

Fig. 12.8. The changes in the community structure in accordance with the parameters.

When we have g < /1, the phase portrait, depending upon other parameters,
may be of three types shown in figures 12.2, 12.4 and 12.4a. The first case stands
for the globally stable equilibrium O, (x* >0, y*=0, z*=0) correspond-

ing to the “producers” community. In the second case, the entire phase space is
divided in two parts:

o the part @, is an attraction domain of the stable equilibrium O,
(x*>0, y*=z*=0);and
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e the part @, is an attraction domain of either the stable equilibrium
O,(x*>0, y*>0, z*>0) (Fig. 12.4) or the stable periodic motion
(auto-oscillation) I" (Fig. 12.4 a).

A birth of the second domain (D, ) and its attracting steady-state motion at
small g is explained by its actual increase due to the managers who may appear
because of their positive effect upon the community productivity. When this posi-

tive role of the managers ceases, they also vanish and the accumulated products
vanish as well.

_ b7l
At the middle-technology level (when 4 < g < A(1+ 7)) and also depend-

ing upon &, there will be possible three different types of the phase portraits de-

picted in figures 12.3, 12.5 and 12.5a. The case represented in figure 12.3 de-
scribes an existence of the “producers — products” community. In this community,

the managers are expelled. This happens when & < K ; on the contrary, with

&, > K there will arise the community holding the managers as well, in addition
to the producers and the accumulated products. Depending upon the sign of the
magnitude A, this community may be stable or unstable; its steady-state regime
may be either an equilibrium state or an auto-oscillation. In the third case (high-
level technologies), the managers will appear independently of their positive or
negative impact upon the society. They arise since the society’s productivity al-
lows them to appear.

The arising variants of the phase portrait will depend upon the sign of the mag-
nitude A and will cover a stable equilibrium community and an unstable auto-
oscillatory community. In these both cases, the entire phase space will be the do-
main of attraction of an equilibrium state or auto-oscillation, i.e. they will be glob-
ally stable.

Note here that except the communities with the steady-state motion depending
upon values of the parameters, there will be also possible the cases in which the
steady-state motion will depend upon initial conditions as well.

Dividing the stable societies into unlimitedly developing and limitedly devel-
oping societies is not of a qualitative nature. This division is rather determined by
a nature of variations of coordinates in the globally stable equilibrium x*, y*,z *

as g —> . Note here that the same effect is exerted by the sign of the magnitude
ce —If upon the nature of the variations undergone by the average values of the
periodic functions X *(£), y*(¢),z *(¢) that describe auto-oscillations. This

effect follows from the ratios for average values of these functions obtainable
from the differential equations of the model

a—bx*(0)~Ip*(t)+cz*(t) =0
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—d—ey*(O)+ fz*(1) =0
since from these equations we obtain

Pt §+7<ce Iy *

In conclusion, we want you to look at figure 12.8 again. It holds the conditions
assigned for different types of phase portraits and shows how one type transfers to

another when the parameters are changed. The parameter g and partly &, deter-

mine a general structure of the community. Here, it is worthy of mentioning that,
while at the high technological level the managers arise independently of their
utility or harmfulness for the community , at the lower technological level their
appearance is stipulated by their sufficiently high utility only. The sign of the pa-
rameter A determines a stability of the community, i.e. whether its limited
steady-state motion is a stable equilibrium or a stable auto-oscillation. At last,
important is also the parameter ce —[f which determines a quantitative nature of

the community development with increase of the technologies.

The diagram and the phase pictures may be imagined as a play of mathematical
intelligence and imagination. Also, one may ponder here about how they pertain to
many-century history of mankind and our fate.
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A mathematical model for the linear oscillator. Possible kinds of motions.
Phase and bifurcation portraits. The motions described by a linear
oscillator: equilibrium states, harmonic, dissipative and divergent
oscillations.

A linear oscillator is a very simple mathematical model wonderful by both its
variety and width of specific interpretations and by the multiplicity of the
phenomena it describes. In mechanics, an oscillator is anywhere where interacting
mass and elasticity are available, as well, in those sectors of electrodynamics
where there are capacitance and self-induction. Schematically they are given in
figures 13.1 and 13.2.

A linear oscillator describes periodic harmonic oscillations, dissipative and
divergent oscillations of various frequencies, various equilibriums, namely, stable
and unstable, and those like a node, a focus and a saddle. A mathematical model
for a linear oscillator is a linear differential second-order equation of the form

¥+20%+0’°x=0 . (13.1)

This equation is of two parameters only, J and o’ ; its phase space is two-
dimensional.

The simplest physical plants described by the equation (13.1) are a spring-
attached mass and an electrical circuit of the self-inductor and a capacitor shown
in figures 13.1 and 13.2.

The mass m can move only along the axis X, and the elasticity force of the

spring (when extended at X from its nonextended state X = 0) is equal to — kX .
Here, “minus” stands for the force being opposite to the displacement of the mass
m . According to the Newton equation,

mx = —kx

or

)'c'+£x=0
m



142 13 Linear oscillators

which for & =0 and — = @” will coincide with (13.1). In a closed-loop circuit
m

including the capacitance C and the self-inductance L (Fig. 13.2), ¢ will be a

capacitor charge; and hence, / = g will be a current force. On the capacitor

plates, there will be induced the voltage % and in the self-inductor

Fig. 13.1. The weight suspended to a spring.

-«

) i
Te

3>

Fig. 13.2. The electrical circuit with a capacitor and a self-inductor.

dl

the electromotive force (emf) equal to — LE—. Again, here “minus” stands for
t

the self-inductor emf being opposite to the current growth. Since the capacitor

dl
closes on the self-inductor, the voltages % and — L; will be equal to each
t
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i _a
da C
or, in view of / = ¢ , we obtain
. q
+—=0 .
Ts

1
This equation will coincide with (13.1), when & = 0 and W’ = E . In any

real electrical circuit, there is an ohmic resistor (only, if we have no extraordinary
case of superconductivity). The scheme of the corresponding circuit with such a

resistor is represented in figure 13.3. In this case, the capacitor emf —g- is opposite

dal . , ,
to emf — L—d— of the self-inductor and the emf — R of the resistor being
t

sequentially connected.

Fig. 13.3. The electrical circuit with a condenser, a self-inductor and a resistor.

Thus, we obtain

or
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L . R 2 1 - .
which coincides with (13.1) when 20 = Z and @~ = L_E . Similarly, in the

case of a spring-attached mass there may appear some move-hampering resistance
proportional with the coefficient /4 to the velocity X . Then, we get

mx =—kx —hx ,
or

. h. k
i+—x+—x=0,
m m

h
which again brings us to the linear oscillator equation (13.1) with 20 = — and
m

The differential equation (13.1) has particular solutions of the form x = e*
where A is any of the roots of the so-called characteristic equation

L +200+@* =0 .

This equation is derived through immediately placing these presupposed solutions
into (13.1). In general, such roots are two; the general solution obtained under the
superposition principle for linear dynamical systems will be as

x=Ce™ +C e | (13.2)

We remind here that the superposition principle when applied to the oscillator
(13.1) implies that if x,(f) and Xx,(f) are the arbitrary solutions to the
differential equation (13.1), then any of their linear combination
Cx,(t) + C,x, (¢) will be a solution as well.

The general solution to the equation (13.1)at 4, = A,,i. . at §° = @, can
be found with the help of this principle as well. Indeed, let A, be close to A, and
two independent solutions be e™ and e™' . However, as /12 — A, they get

identical and only a single solution remains. Though, it is possible to consider the
solution

4 - /12)—1(e111 - eﬂzt)
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which, as 4, = 4;, does not disappear and does not coincide with e™' — this

solution becomes equal to t e™ . Therefore, if A, =4, =A, the general

solution may be written as
Ce™ +Cyte” . (13.3)

This simple consideration speaks about the fact that when solving this equation
we may assume A, # A, . In the opposite case, as 4, —> 4, , one should then
pass to the limit

The roots A, and A, of the characteristic equation can be real or complex. In

any case, the general solution (13.3) with appropriate C] and C , can satisfy any

initial conditions of the form
x| o=%, . A =x . (13.4)

Indeed, these conditions, if specified, will bring us the next two linear equations
regarding C| and C,:

C,+Cy=x, AC,+4,C,=x
From this, one can easily derive the below:

_ AyXy =X _Ax —x

C‘/z,i A=A
2~ M 1~ M2

Therefore, the corresponding will be as
x = (4, = A) H(Axy —x)eH = (Axy —x,)e™ | . (13.5)
For complex roots, when
A,==0tiQ , Q=+o’'-5, (13.6)

from (13.5) we find that

1
Y= —EiQ{[(—é“— iQ)x, —x, o (cos Qr + i sin Q1) -

—[(=6+iQ)x, —x, ¥ (cosQt —isin Q) } (13.7)

=e ¥ (x, cosQt + Q7" (&, + x,)sin Q).
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This very result (13.7) and a general form for the real solution of the
characteristic equation with complex roots may be obtained in another way.
Again, due to the superposition principle,

1 -
E(e/z" +e™)=e¥ cos QU

and

1 o
?(e/l" —e®)=esinQy
i

will be the solutions as well as e *'* and ¢ ™' ; but they are real already. The
superposition of these real solutions gives us a general solution.
What are then the derived general solutions

Ce™ +C,e™ (13.8)
with real 4, and A, and
e (C, cosQt + C, sin Q) (13.9)

with complex 4, and A, ?
We are interested both in the plots of x(f) as functions of time t and the phase
portraits corresponding to the cases (13.8) and (13.9). Both this and that are

dependent upon the parameters ¢ and @ . First, which of these cases, (13.8) or
(13.9), occurs will depend upon these parameters.

For the sake of visibility, let us introduce a plane of the parameters @* and &

(Fig. 13.4). We emphasise that both parameters here ,0 and @’ , can have any
sign. To the marginal case separating (13.8) and (13.9) there will correspond the

equality &* = @®>. On the plane in figure 13.4, to this equality there will
correspond the parabola s. It is inside this parabola that o oo occurs; it is

beyond this parabola, & > ot , there occurs the case (13.8).

Let us , first, consider the oscillators corresponding to the points lying within
the parabola. To the points on the axis & = 0 within the parabola (indicated by 1
in figure 13.4), there will correspond the harmonic oscillators

¥+@'x=0, (13.10)
whose motions are the well-known harmonic oscillations

x=C,cosax +C,sinax = Acos(ax + ),  (13.11)
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where A is an oscillation amplitude, @ is an oscillation frequency, and ¢ is a

phase. The amplitude 4 and the phase ¢ are related to the constants C, and C,
as

Asin p=C, , Acosp=C, ,

from which it follows that

C
A=C?+C? | tgp=—- .

@
-©

Fig. 13.4. Decomposing the plane of parameters @* , O of the linear oscillator into the
domains of different roots /ll and }uz of the characteristic equation: 1 both roots are

purely imaginary; 2 complex with negative real parts; 3 complex with positive real parts;
4 real negative; 5 real positive; and 6 real of different signs.

@/a
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The plot of harmonic oscillations is given in figure 13.5. In it, also shown are

. , 2r
the amplitude A , the phase ¢ and the period 7 = — .
w

From (13.11), we derive the below parametric equations of phase trajectories
x = Acos(ax + @)
X =-—wAsin(axt + @) .
The point (x,X) , being a function of £, runs clockwise along the ellipse

2 .2
X X

?+ W’ A*

To different A there will correspond different ellipses, and this will result in
the phase portrait given in figure 13.6.

=1.

T

M),

Fig. 13.6. The phase portrait of the harmonic oscillator (domain 1 in Fig. 1.4).

Note that the phase trajectories could be also found through immediately
integrating the differential equation (13.10) of the harmonic oscillator. Namely,

through multiplying (13.10) by X and integrating the result we find that

2 2.2
¥ ex _n,
2 2

where the integrating constant /1, corresponding to the scaled oscillator energy,
will be related to the oscillation amplitude of the oscillator as follows

h=la)2A2.
2
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Let us pass now to the domain above the abscissa in the plane of parameters
@’ , O, yet remaining within the parabola. Then, due to (13.9), we obtain

x = Ade™* cos(Qt + @) . (13.12)

This will correspond to the dissipative harmonic oscillations shown in figure 13.7.

Fig. 13.7. The exponentially dissipative harmonic oscillation (domain 2 in Fig. 13.4).

V4
Their oscillation period —— is a little larger than that of the associated harmonic

2
oscillator being equal to — (Q =V @” — 52 ). For 8(0, i.e. when displacing
w

down from the abscissa axis in the plane of parameters @’ , O (Fig. 13.4), we
shall get the same solution (13.12). Though, this time the associated oscillations
will be the increasing ones, as shown in figure 13.8.

)

2w

Fig. 13.8. The exponentially divergent harmonic oscillations (domain 3 in Fig. 13.4).
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In the cases discussed, the phase portraits consist of the twisting (0 > 0) or
untwisting (& < 0) spirals represented in figures 13.9a and 13.9b.

Thus, we have constructed the plots of x(#)and the phase portraits within the
domain 1(5 =0, >0), 2(5>0,67(w”) and 3 (5 <0,6°(@") (Fig.
13.4).

Now let us draw the plots of x(#) and the phase portraits for the oscillators
from the domains 4 (0 >0, St>w*>0),5(5<0, P> >0),6(

@ <0 ) of the same figure 13.4. In contrast to previous cases corresponding to
complex roots of the characteristic equation, now these roots are real and the
general solution will be represented by the formula (13.8). This solution is a

superposition of the two solutions, X = e and x =e™ . The plots of these
solutions are increasing or falling exponents depending upon the signs of 4, and

A, . This makes it possible for us to imagine the shapes of the plots for their
superpositions with any coefficients C; and C, . To construct the phase portraits
, let us first draw the phase trajectories for specific solutions X = e™ and

xX=e

H‘{

=Y

Fig. 13.9. The phase portraits for a the domain 2 in Fig. 13.4 and b the domain 3 in the
same figure.
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Let A be either A, or A,, then in both cases the parametric equation of the phase
trajectory is written as

x=e¥ | x=de* (~w< t< ©) . (13.13)
The phase trajectories are represented as rays
x=Ax (x>0 o0rx<0)

running by the phase point, according to (13.13), from the origin to infinity, when
A >0, or vice versa, from infinity to zero, when A < 0. It is not difficult to
understand that the below vector equality

(x,%) = C,(1,4)e™ + C,(1,4,)e™ (13.14)

immediately follows (13.13). The geometrical interpretation appropriated is
represented in figure 13.10.

Ci(1, Ay) "
» X

-

Fig. 13.10. The subsidiary construction made to create the phase portrait for a nodal
equilibrium state.

Y

Fig. 13.11. The phase portrait of a stable node (corresponds to the domain 4 in Fig. 13.4).
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Through changing signs and values of C1 and Cz, we obtain a possibility to
construct a phase portrait. In the domain 4 (Fig. 13.4), /ul and A, are negative and
the corresponding phase portrait is given in figure 13.11. In the domain 5, /ll and

A, are positive; the associated phase portrait will be of the shape shown in figure
13.12.

.-—\

Jrr

Fig. 13.12. The phase portrait of an unstable node (corresponds to the domain 5 in
Fig. 13.4).

In the domain 6, /4, and A, are of different signs and the phase portrait is of the

form shown in figure 13.13. Thus, we have found all possible forms of the phase
portraits for a linear oscillator. In each of them, there will be available a special
phase trajectory converging to a unique point, viz. to the equilibrium state

x =X = 0. The remaining trajectories will lie, as it were, around it; therefore,
one may speak about various kinds of equilibrium states.

Eﬁ%

Fig. 13.13. The phase portrait of a saddle (corresponds to the domain 6 in Fig. 13.4).
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They correspond to the domains 1,2,3,4,5 and 6 in figure 13.4 and are called,
respectively, a centre, a stable and unstable foci, a stable and unstable nodes and a
saddle. In this listing, the boundary 1 between the domains 2 and 3 is
distinguished and the rest boundaries were left without our attention. This was
done due to its essential role. This is the boundary between exponential stability
and instability, the dissipative and divergent oscillations. The case of the crucial
boundary is a general one for conservative and, in particular, Hamiltonian
systems.

The phase portraits of the harmonic oscillators covered by this boundary case
carry some specificity that is extremely essential for statistical mechanics. This
specificity is revealed when, instead of a single oscillator, there is taken an
ensemble of identical oscillators, each of which being represented by its running
phase point. Here, a phase portrait may be interpreted as a stream of particles
representing oscillators or as a stream of phase fluid. Phase particles move in time

and are deformed in some way. If there is assigned the domain G, in phase space

, then, upon the time 7, this domain will be transformed to the domain Gt , In

accordance with the transformation

x=e?% J(cosQ + ésin Qt)x, + singﬁxo ,
Q Q

2
x=e " {—(Q+%)sin Qix, +(—%sin Qr + coth))'co}.

This transformation is received from the formula (13.7) for the solution x(¢) with

the initial conditions X, and X;. The jacobian of this transformation

o ox
_axO xO
TTla e
ox, o%,

is computed in a simple way and turns out to be equal to e*? . This result implies
that the phase fluid, while floating, is compressed when & > 0, and when & < 0
it will expand; when o = 0 it will behave as incompressed. To be more exact,

for the time 7 any element of the phase volume d o, will be transformed into the

element do , and

do, =e?%do,
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24 . . . . .
Therefore, € is a compression coefficient (& > 0 ) or an extension coefficient

(8 < 0) of the floating phase liquid. For & =0, this extension coefficient is
equal to unity; this corresponds to the incompressed fluid flow.

The above listed kinds of the linear oscillator phase portrait — a centre, a focus,
a node and a saddle — are available not only for linear oscillator equilibriums but

also for the equilibriums O(x”,y") of any two-dimensional dynamical systems
represented by two second-order differential equations

x=X(x,y) , y=Y(x,y) . (13.15)

We already encountered this when dealing with the phase portraits of the
interacting populations. In that case, these phase portraits occurred not in the
entire plane but within some neighbourhood of the equilibriums only. As well as
for the oscillator, the type of the phase portrait within the equilibrium neibourhood

of x*,y" will be determined by the roots 4, and A, of the characteristic
equation. As well known, this equation for the equation (13.15) takes the form:

oX oX
(—) -4 &)
ox oy
X)) = =
oY (5_Y )

(g)* %

-7 - (Zy {?X] )2 J{agj ary _(ax (iY_j ~0
* % ax ) oy oy )\ ox '
Here, the stars stand for the derivatives being computed in the equilibrium point

xL,yt.
In the neibourhood of the equilibrium state, the linearized equations (13.15) are

of the form
. (oxY ax
f‘(a)f*(aj”
fovY L (orY
””(&j“b]”’

where & and 77 are deviations from the equilibriums x",y e E=x—x"

and 7=y—y".
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Excluding & or 77 from these differential equations leads to the linear

oscillator equation for &

é’f.._ (61} + é_): §++(a£j _az _Q‘{.(_ (QK\] 620
ox ay ax ) oy oy ) \ox
or to exactly the same equation for 77.

Below, we shall give you some specific examples of the linear oscillators for all
domains 1-6 of the bifurcation portrait held in figure 13.4. Here, the linear
oscillator model (13.1) is, as a rule, this or that approximation of the real system.
Very often, this system is admissible only for small or not very large deviations
from an equilibrium. Say, in the linear approximation, the lower state of the
pendulum equilibrium is described through the linear harmonic oscillator with the
centre-type equilibrium. The movement close to the upper equilibrium is

described through the oscillator with the unstable saddle-type equilibrium. Indeed,
the circle pendulum

¢'5+§Sin¢=0 (13.16)

will have two equilibriums: the lower (0* =0 and the upper (0* = 77 . Supposing

that @ = @" + X , we obtain

5c'+§sin(¢* +x)=0 ,
or
)'c'+§sin @ +§xcos¢* +.=0 (13.17)

where the dots stand for the magnitudes of the third and greater order of
smallness with respect to the supposedly small x . From (13.17), for {0* =0 it
will follow that

i+@’x=0, w*=%;

and for (0* =7,

i-w'x=0,

as was stated.
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The pendulum determined by the mathematical model (13.16) will be
represented by us as a solid suspended in the gravitational field. Though, this

pendulum may be also represented as a dipole in the electrical field. If / is an
inertia moment with respect to the mass centre of the 2/ - length dipole, e and
— e are the charges on its terminals, E is an electrostatic intensity, then the angle
@ of the dipole deviation from the electrical field direction will satisfy the

equation

1p=-2lesing .

Here again we obtain the classical equation of the pendulum. In the linear
approximation at small deviations from the equilibrium values @ =0 and
@ = 77, it will be a linear oscillator.

With a good approximation, the linear oscillator describes small oscillations of
a boat or some other body swimming in water. A boat or a ship have board and
keel oscillations, each of which possessing its own frequency. Through a linear
oscillator it is possible to approximately describe the oscillations of a string or a
building. Here, for the building we mean the vertical oscillations of its base and its
transversal oscillations. A 100-storey skyscraper oscillates so that transversal
displacements of its top make up about 1 meter. Through the oscillator it is
possible to describe also the elastic oscillations of gas contained inside the
Helmholtz resonator-like vessel, the oscillations of molecules in a crystal, the
oscillations of electromagnetic waves within a transmitting cavity. This case also
covers many other oscillations, such as those of a car, a train, an air bubble in
water, and the oscillations of the various electrical circuits in a radio-circuit board;
the oscillations of water in the communicating vessels, the oscillations of fluid in
water ions, the oscillations in a vestibular system, the twisting oscillations of the
flywheel mounted on a stiff shaft.

In all the examples of the oscillators listed above, the energy dissipation will
take place and the oscillations will dissipate. Here, we shall obtain & >0 or
o0 =0 if this dissipation may be neglected. Below, you will be given some

examples with & < 0, with the so-called negative friction when, in contrast, there
occurs some energy pump-up from some source. Besides, we shall also discuss
some nonlinear oscillators for which a linear description will be not sufficient;
their behaviour is different essentially.

In conclusion, you are invited to look at the below common figure 13.14 as a

general result of all the above said. It shows the evolution of Xx(¢) and the types

of the phase portraits for the parameters @* and O taken from the different
domains of the bifurcation diagram.
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Fig. 13.14. The final parametric portrait of a linear oscillator. Each of its domains contains
both time graphs and phase portraits.



14 Electromechanical analogies. Lagrange-Maxwell
equations

Mechanical and electrical oscillators. Electromechanical analogies. The
Lagrange-Maxwell equations. Invariance of the Lagrange equations. The
least-action principle as a variation form of mathematical models.

Let us return to the simplest examples of mechanical and electrical linear
oscillators. The first physical model is described by the differential equation

mi+hx+kx=0 (14.1)
and the second by the differential equation
Li+Rqg+(1/C)g=0 (14.2)

The models (14.1) and (14.2) turn into each other via replacing the variable x
by ¢ (X by ¢, X by §) and the parameters m by L, h by R, and k by
1/C . Therefore,if m =L, h=R, k=1/C andif, atsome initial point of
time, Xx=¢ and X =g, then the latter equalities will take place for all
subsequent time. The variable X is a coordinate of mass position and ¢ is a

coordinate of capacitor electric charge, and under the above conditions these
variables will vary similarly. Analogously, all the time the value of the mass

displacement velocity X will coincide with one of the electrical current ¢ in

the circuit. Thus, one may speak about the analogy between the spring - attached
mass with viscous friction and an electric circuit of a self-inductor, a capacitor and
a resistor. The analogy here is implied in the sense that the absolutely different

physical magnitudes x and ¢ vary identically, providled m =1L, h=R,

k=1/C. And analogous are mechanical displacement and electrical charge,
velocity and current, mass and self-induction, viscous friction coefficient and
ohmic resistance, spring stiffness coefficient and the magnitude inverse to the
capacitance.

Let us proceed with this analogy. The mass kinetic energy is equal to mx* /2 .

Its analogue will be the magnitude qu /2 .1t is known to be the energy of a

self-inductor magnetic field. The potential energy of the spring is kx> /2, its
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analogy is q2 /2C, and it is, as we saw before, the energy of capacitor electric

field. The product kx is a spring compressing force and its corresponding
magnitude is the capacitor electrical voltage g/ C .

Thus, we have revealed the analogy between the magnitudes of displacement,
velocity, force, kinetic and potential energies and, respectively, charge, current,
voltage, self-inductor magnetic field energy and capacitor electric field energy. At
the same time, the mass m , the viscous resistance /1, and the elasticity k are

similar to the self-induction L, the ohmic resistance R, and the value 1/C
being inverse to capacitance.

This analogy does not only relate to the spring-attached mass and electric
circuit. It is much wider. To make sure of that, let us imagine a mechanical and an
electrical system of the elements: masses, “clasticities”, “viscous resistors” and,
respectively, self-inductors, capacitors and electric resistors. Each of these
simplest elements is represented by its mathematical model. They are as follows.
The mass m “ties together” the acceleration X and the force /* by mX = F.

And similarly, the self-inductor L ties together the current change rate § and the

voltage FE so that Lg = E. The same are the analogies between stiffness and

capacitance, mechanical viscous and electrical resistances. Let us write down all
of them:

mi=F«—Lj=E

hx=F«—Rg=F (14.3)

kx=F«——>q/C=E.

Here, in each of the analogies (14.3), the force F' and the voltage £ have their
own sense and value.

After that, it is clear that, if one has two systems, mechanical and electrical,
composed of the above elements in the way that there appear the same links
between the analogous elements, then the systems as a whole will be analogous
too. This makes up the basis of an analogous modelling that creates a possibility
for studying a purely mechanical system through its electrical analogue, and vice
versa.

Let us omit this subject for a while and restrict ourselves with the above said.
Only think it over what relates to what in this remarkable analogy. Let us write it
once more

X—>q mv’ [ 2¢—>LI1*/2 me«—>L
v=i<—I=q¢ k’/2¢—q°/2C m<«—>1/C (14.4)
Fe—FE h«<——R.
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And now let us pass to a difficult question of constructing mathematical models
for mechanical and electromechanical systems.

For mechanical systems, Lagrange invented a general simple and convenient
universal way of creating their dynamical mathematical models in the shape of the
famous Lagrange differential equations. In general, this is a great and beautiful
theory. You will become familiar with it from appropriate lecturing courses. Right
now, without going into details, I will try to describe you an algorithm of how to
construct these differential equations for an arbitrary mechanical system in which
the positions of all its material points are determined by a finite collection of

scalars ¢,,4,,...,4, named as generalized coordinates.

Let, at first, all forces acting in the system be potential, i.e., there exists some
potential energy V(q,,q, ...,q,,t) for them, depending on the generalized
coordinates and, possibly, on the time 7. It implies that the work of these forces
along any virtual displacement &9,, g, ,...,0g, will be equal to reduction of

potential energy, i.e.,

c%=ﬂW=—ﬁK@w
dq

a

Further, it is clear then that at any moment of time the kinetic energy 1T  of the

system can be expressed via the generalized coordinates ¢,,4,,...,q, and the

generalized speeds ¢,,q,,...,q, . Because the kinetic energy, as you know, is a
sum of the kinetic energies of all system material points whose positions uniquely
depend upon ¢,,4¢,,...,q, and .

According to Lagrange, it is necessary to write the below function
L=T-V, (14.5)

and with the help of it, the motion equations desired are then written as

doL O 4 (@=12..m. (14.6)
dt 0q, 0q,

The analogy explained above makes it possible to transfer this very beautiful
general technique of writing motion equations to electrical systems. In his time,
this was done by Maxwell. This can be done not only for electrical systems but for
electromechanical systems as well. As the above analogy demands, you are only
requested to do a single thing, and this thing is understanding that the kinetic
energy I now is a sum of the mechanical kinetic energy and the energy of
magneticrfieldszof wrinductors;zandsunder the potential energy ¥ you have to
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understand a sum of the mechanical potential energy and the energies of electric
fields of capacitors. Here, the generalized coordinates ¢,,¢,,...,{4, are thought

to be any scalars that define not only a mechanical position but also all the charges
whose derivatives determine all electrical currents. We emphasize that this time
the system contains neither mechanical nor electrical resistors.

Now through a very simple example of the mathematical model for motion, let
us explain how the notation of the differential equations in the form of the
Lagrange equation (14.6) comes into being.

Let us take the Newton equation describing motions of the linear mechanical
oscillator

mx +kx =0 (14.7)

and carry out the following transformations

.._dimif Ioc 0 kx?

X =— , =
dt ox 2 ox 2

>

and, hence, we obtain

) 2 .2 2
mjc'+loc=—d—i_(mx _kx)_i(mx _kx
dt ox 2 2 o 2 2

y=0, (148)

which coincides in its form with the Lagrange equation (14.6). Here, x is a

generalized coordinate, mx” /2 is a kinetic energy, and kx” /2 is a potential
energy.

Similarly, to the Lagrange form there is reduced the following equation of the
electrical oscillator

d 0 Lg* ? o Lg’
q _ﬁ__(_q__q_)__(i

2
Lj+1-229 A i (14.9)
C dtog 2 20 8q 2 2C

where the generalized coordinate is the charge g of capacitor, Lg/2 is the

magnetic energy of the self-inductor, and ¢/2C is the electric energy of the

capacitor.

These computations look artificial and proving nothing. It is so indeed. In order
to give them some sense, it is necessary to penetrate into the secret of the
Lagrange notation for the motion equations. Its secret is in the fact that these
equations correspond to some variation problem on minimum of a functional. As
known, the necessary condition for the minimum is that the first variation of the
functional must be equal to zero. These conditions under which the first variation
1s reduced to zero turn out to be the Lagrange equations. This makes up the secret
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of the surprising form and universality of the Lagrange equations. However, let us
not to be in a hurry and, at first, get acquainted with the surprising property of
invariance in the Lagrange notation for motion equations, the independence of
their form upon the generalized coordinates chosen. In particular, it takes place
for the equations (14.8) or (14.9). It turns out that, with any change of variables of
the kind x = f(») (¢ = f(p)), the form of these equations still retains, in

contrast to the Newton or Kirchhoff equations.
Indeed, replacing the variables in the Newton differential equation (14.7)
reduces it to the form

a{y +ayy)+kF(y) 0, (14.10)

which is different from the initial writing (14.7). Now, let us perform the same
change of variables in the Lagrange notation (14.8). We need to make sure that

d 0 mx’ /cx2 6 mx’ kx2

= (14.11)
implies
of ..» of
40 "%" oy o "G 20
p —( ) ( )=0 (14.12)
t Oy 2 2 oy 2

and vice versa, i.e., a change of variables in the Lagrange equation is reduced to a
change of variables in the Lagrange function (the Lagrange function must be a
function of the generalized coordinates and speeds we accepted). For this, it is
sufficient to show that (14.12) coincides with (14.10), since (14.10) coincides
with (14.7) and the latter coincides with (14.11). Indeed,

4o L 0 S
dt oy 2 27 2

[mu&+fy)+v]f

and, as Of /Oy # 0, we come to the equation (14.10).

Thus, the Lagrange notation possesses a surprising property of invariance for
the writing form with respect to a change of variables. This notation does not
depend on_the variables chosen; it is invariant with respect to a change of
variables. It 1s interesting where this invariance comes from. To outguess it is not
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so easy. However, in research it is often very important to reveal a certain toe-hold
and then you have to pierce until you have caught the idea. And what should be
pierced is, perhaps, clear — evidently there exists a certain coordinate-free
approach to separating the actual system motions from all imaginably possible.
You know that it is this, after all, that differential equations do.

From a historic point of view, the variation formulation of the mechanical
motion laws, independent of coordinates, was in the air for a long time, and it
rested upon theological conceptions about the expedience of Providence. Much
has been written about it. Most likely, even nowadays it is difficult to come to this
purely logically . Therefore, without playing cunning, we will tell point-blank
what the matter is.

Let us take a time integral of the Lagrange function from £, to £,

fa

[}

and call this magnitude an action. Let us denote it by W and write in detail what
the action /¥ depends upon

W = (LG, @, (031 (O, 50)dlE

fo

It is determined by the time-dependent functions ¢q,(f) (@ =L2,...,n)
within the time interval from 7, to f,, ie., this is a functional. Let us consider
how this functional will vary at little variations of the functions ¢, (¢) . For this
purpose, let us slightly change these functions by substituting ¢, () with
q,(#)+ g, (t) and find the variation of the action W up to magnitudes of the

first-order smallness with respect to the little variations o7, (f) and &g, .
We shall then have the following

i i oL oL
oW =5 |Ldt = — &, +——&,)dt =
j ,!(Zaqa&’“ % &,)

t

' oL oL d
=[O =&, +—Z 5, )dt =
t:)'.( a aqaf ﬁa aq'a dt &]0’)
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oL
=X e,

oL d oL
IZ<—7~58—>5q

The last operation in these calculations is a partial integration. As a result, we
reveal to our great surprise that integrands here are the below expressions

0L doL
dq, dtdg,’

(14.13)

[24

and getting them equal to zero will be just exactly the Lagrange equations. What
then should be required to have them turned to zero? What must then be the

assumption concerning the action W that would bring such a conclusion? To
outguess it is not difficult. Let us require that

oW =0,
provided that there are no changes of the functions ¢, (f) on the terminals, and,

hence, &Ia =0 for { =¢, and { = {,. Indeed, from these assumptions it follows
that

oL doL
I[Z( Sy )y, 1dt = (14.14)

a

for the arbitrary 0g, (& =1,...,n) reducing to zero for ¢ =¢, and ¢ =1¢,. It
is not difficult to understand that this will result in all the expressions (14.13)
being equal to zero. This will be so just due to the arbitrariness of an which , by

virtue of this, may be, in particular, chosen equal to

d OL

A, —(——d—a—) (@),

a

where & (£) reduces to zero at terminals of the closed interval [t 0o ] only. For

such variations of the functions ¢, (¢) , from (14.14) it follows that

t 2
J' Z[a—]‘——d—a—L) 2 (H)dt =0, (14.15)

and, if one of the expressions (14.13) had been nonzero at any value ¢ inside the
interval [t o0s L ] , then the integral (14.13) would be also positive and nonzero.

Thus, the Lagrange equations are equivalent to the requirement
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SW =0 (14.16)
for any variations of the functions ¢, (¢), for which their values at =, and

t =t, do not vary.
This is a very desired variation statement for the principle to choose the actual
motion among all imaginary possible. The actual motion from the initial point

q, =qg to the terminal point ¢, =q; during the interval [to,tl] is

distinguished among all imaginary by the action variation for it being equal to
Zero.

It can also be shown that for the actual motion not only the first variation is to
be zero, but the action reaches a minimum. However, what we have learned is
sufficient for us; namely, we came to the motion law formulation independent of
the variables chosen and to the fact how we describe the law. The invariance of
the Lagrange notation for motion equations just follows from this independence.

Meanwhile, we have found out that as a mathematical model there may be
utilized not only differential equations for motion but also, perhaps, more general
variation principles. These principles are more general, since they do not depend
upon a coordinate description. They are as if above it. Now we are repeating what
this variation mathematical model is.

A state space does not constitute its basis, but the basis now is a space of

positions, configurations, a space of variables ¢,,...,q,. For a mechanical

system, they will be the positions of all its material points. For electrical systems,
considered above, they will be electric charges whose time derivatives are electric
currents.

A motion under the variation principle is defined not through its initial state,
but through its initial and final positions. In any case, they are supposed to be, as it
were, given or fixed. And the variation principle itself is that an actual motion
from a given initial point to a final one is distinguished by its action variation
being equal to zero.

We may look at it as some mathematical technique for a new notation for the
differential equations of motions, or as a new principle. This very principle is
called the least action principle a discovery of which belongs to Helmholtz . This
is a principle of some expediency, and in its idea it is different from the principle
of determinism. Generally speaking, the determinism principle does not follow
from the expediency principle, but specifically, when applied to laws of nature,
this retains so always. It is this very fact that makes both points of view
consistent, complementary to each other.

Now I wish to give you some examples of how to use the Lagrange-Maxwell
equations. They will convince you in their efficiency and also even in the cases
when you do not know how to approach to constructing a mathematical model.

As a first example, let us take a usual circular pendulum. Its kinetic energy is

equal to J@° /2 and the potential energy is — mgl cos ¢, where ¢ is an angle

of 'deviation from a vertical line, J "and m are an inertia moment and a mass,
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respectively, and / is a distance between the point of suspension and the mass
centre. Thus, the Lagrange function is equal to

.2

=72
2

+mglcose.

It is then easy to find that

d oL 0L .. .
————=Jp+mglsing=0.
dt 09 O¢p

Now let a pendulum be not circular but parabolic, i.e., the mass # can move

along the parabola z = ax’ placed in the vertical plane (Fig. 14.1).

X

o

mg ¥

Fig. 14.1. A parabolic mathematical pendulum:.

In this case,

my® B m(x* + p*) _m

T = Z(1+4a>x>)%°,
2 2 2

X
V =mgz = mgax®

and

—— ——— =m(l+4a*x*)¥+2 =0.
i or o MUHAaX)Tromeax
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Finally, let a material point of mass 7 be moving in the vertical plane Oxz
(Fig. 14.2) along an arbitrary curve whose equation in a parametric form will look
like

x=x(s), z=2z(s),
where the parameter S is a curve arc length being counted from some point O .

We find immediately that
.2

="y mgz(s),
and, therefore,
d oL OL
————=mS +mgz'(s)=0.
di 5 0s g2 (s)
Az 0
h)
m
x,2)
N X
4

Fig. 14.2. An illustration of a material point motion along an arbitrary smooth plane curve
in the gravity field.

Let us take an electric circuit consisting of the self-inductance L and the
capacitance C'. At this,

and, hence,
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that is well known for us.
Now, let us complicate the task by supposing that there is a ferrous stick of
mass m suspended by means of a spring inside a self-inductor. Since the stick

can swing, the self-inductance L will depend upon the stick displacement X
from its equilibrium position x = 0 (Fig.14.3).

q
Lix)
‘ C

Fig. 14.3. The interacting mechanical and electrical oscillators.

This system is rather complicated. It has two oscillators (a closed loop of the
self-inductor and the capacitor, and a spring-attached mass) which interact. A
motion of the stick causes changes in the self-inductor magnetic field inducing in
it the electromotive force (emf) , and a varying magnetic field of the self-inductor
coil acts upon the ferrous core. In order to write the motion equations for these
oscillators one needs to find both the emf inducted in the coil by the moving stick
and the varying force with which the magnetic field of the self-inductor coil acts
upon the ferrous core placed in it. This is not so simple for a mathematician.
Whereas to write the Lagrange-Maxwell function is very easy.

Besides the coordinate X, let us introduce also the capacitor charge ¢ . Then

we obtain

2 2 2 2

and come to the two equations for the coordinates X and ¢ as functions of time

-2 -2 2 2
oL mi g
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-i§£~§¥wM—lyum2+h=o,
dt ox Ox 2

4oL O wi-L(ii+L=0.
dt g 0Oq C

As it had to be expected, from these equations there is obtained the energy
conservation law of the form

-2 -2 2 2
Lx)g” mi” g Rk
2 2 2C 2

= h = const .

This expression is obtained through multiplying the first equation by X, the
second equation by ¢, and, then, by adding them and integrating.
Let us rewrite the above Lagrange-Maxwell equations in the form

zm+mzlyf,
2

. q b

Lg+==-L'xq.

(= q

When L'=0, these are decomposed into two independent oscillators,
mechanical and electrical. Their interaction is the stronger, the greater L' is. For
L' #0, the electrical oscillator will act upon the mass of the mechanical

I,
oscillator with the force EL q ?, and the mechanical oscillator will induce in the

electrical circuit the emf equal to — L'xq .

Perhaps, you have already noticed that in all above-mentioned examples
mechanical and electrical resistors are absent. This is so, because the Lagrange
equations presuppose the acting forces to be potential. With the potential function
being independent of time, the energy conservation law, as was discussed in the
above example, follows from this presupposition.

If forces are not potential and, in particular, there are viscous frictions and
ohmic resistors available, then the energy does not retain and the Lagrange
equations become not applicable. However, they can be generalized. This is not
difficult to do. One will need only to proceed not from the potential energy of the
acting forces and the energy of electric field, but from the expression for the
elementary work J4. With 7 being a potential energy, the elementary work

OA will be equal to

§A:—6V:—Z§qia“qa. (14.17)
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In a general case or, more exactly, in a more general case, we have

M=>0,4,, (14.18)

are replaced by the so-called generalized forces Q -

i.e. the derivatives —
04,

The generalized Lagrange equation turns out to be reduced to this formal

replacement. Let us write the Lagrange equations in the form

dor _or oV
dt 9§, oq

_aq

H

24 a

and now their generalization will be as follows

———=0,. (14.19)

Note also that by separating potential and nonpotential forces , the Lagrange
equation can be written as

d oI or ov

_ [ +
dt 64, 0q oq O

a a

or

——— =0 (14.20)

where, as before, L =T —V , but V' relates to the potential forces only and
nonpotential forces are represented by the generalized forces ), .

Let us illustrate, at first, the equations (14.19) and (14.20) with a very simple
example of a spring-attached mass in the presence of viscous friction. In this case

the kinetic energy 7" is equal to mx” /2. At the virtual displacement of X there
exist two forces performing work, the elasticity force — kx and the friction force
— hx . Their work for the displacement Ox is equal to

OA = —kxox — hxox,

so the generalized force corresponding to the coordinate X (simply, the force in
our case) is equal to

O = —kox — hi.

The Lagrange equation (14.19) takes the form
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mx = —kx — hx .

When constructing motion equations in the form (14.20), the potential elasticity
force should be referred to the Lagrange function L equal to
mx’  kx’

s

2 2

and the viscous friction generalized force ()  will be — AxX . By virtue of this,
the equation (14.20) will be of the form
d 0 mx’ kx* o mx®

a5 ) x5

2
_ﬁ_)z_hx
2

or
mx+kx=—-hx.

For an electric circuit with a self-inductor, a capacitor and an ohmic resistor, all
will be similar, since the work of dissipative forces of the ohmic resistor in

transferring the charge g is equal to — Rqoy .




15 Galileo-Huygens clock

How and why did the Galileo-Huygens clock appear? What is
fundamentally new in it? What characterizes its accuracy? Analysis of
errors and ways to eliminate them. A simplest mathematical model of the
Galileo-Huygens clock. A phase portrait. The Poincare mapping and the
Keniks-Lamerey point mapping diagram. A clock as an auto-oscillating
system and as a feedback system.

Computing time is the most ancient problem of humanity. Millions of years,
centuries, years, months, days, hours, minutes, a second and its shortest portions,
nanoseconds are those various scales, in which a man has learned to measure time
for his different purposes. Initially, time measurements were based on the Earth's
revolutions about the Sun and on its own revolutions. The signs of the zodiac
were used for indicating year seasons, and the Sun in the daytime and stars at
night for indicating time.

A need of locating ships, caused by sea navigation, required exact time
measurements. A latitude used to be determined through astronomic observations
only. For measuring a longitude, the exact knowledge of time was required as
well. To determine a longitude for a position with up to a one-kilometer accuracy
is equivalent to a three-angle second error. But people had to sail without being
able to correct ship's clock indications for months and even longer.

In the XVII-th century, the UK Admiralty announced a competition for
inventing a high-precision clock. Such a clock was designed and manufactured by
X. Huygens. It was a first pendulum clock where there were used pendulum
oscillations for countdown. Pendulum oscillations were studied by G. Galileo
who revealed an invariability of their period (Galileo was not able to observe
frequency variations, since pendulum deviations were small). It is on this basis
that Huygens created his clock. Therefore, this new clock of his may be called the
Galileo-Huygens clock. Before Galileo and Huygens, there existed a clock with a
balance-wheel, however the balance did not possess its own oscillating frequency;
its oscillating frequency was made dependent upon and determined by the actions
of the clock mechanism upon the balance.

A use of the device with its own oscillating frequency turned out to be
exceptionally fruitful for clocks and resulted in a series of more and more precise
clocks of various constructions. On the basis of this principle, there were produced
the following types of clocks: a spring-attached balance clock with cylindrical,
anchor, and chronometer movements; a quartz-crystal clock using own elastic
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vibrations of a quartz plate; a clock employing an electrical oscillatory circuit
with its own frequency; and finally, a phenomenally accurate molecular and
atomic clock enabling to reveal and measure the irregularity of the Earth's
rotation.

In order to turn an oscillating pendulum into a clock, one needs to count its
oscillations and indicate their number, for example, with the help of a hand on a
clock-face in a corresponding scale. Besides, its oscillations have to be sustained,
for they are damping themselves. Thus, there arises a necessity in converting
damping oscillations to undamping auto-oscillations.

E

Fig. 15.1. A schematic representation of a travelling gear in a clock.

These both problems are successfully solved with a use of a so-called clock
movement, whose simplest variant is diagrammatically shown in figure 15.1.
After each pendulum oscillation there and back, a ratchet moves one tooth ahead
under the action of a wound-up spring or of a falling weight; simultaneously it
imparts to the pendulum a pushing impulse. In this way, a rotating velocity of the
ratchet wheel is determined by the pendulum oscillating frequency, and at the
moment, when the wheel is performing a turn, its teeth are pushing the pendulum,
thus sustaining its oscillations.

A running accuracy of the clock equipped with such a device is determined by
a stability of pendulum oscillations. An oscillation period of the pendulum
depends upon many reasons, and each of them can entail its changes. The crucial
factors determinative to the oscillation period are its length, mass, inertia
moment, medium resistance and friction in the suspension point, acceleration of
gravity, impacts of the ratchet-wheel , and also the amplitude of pendulum
oscillations.

Consider at first a dependence of the pendulum oscillation period upon its
amplitude. Let us write the equations of pendulum oscillations in the form

Jo+mglsinp =0, (15.1)
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where J is its moment of inertia, 7 and / are a mass and a length (the distance
from the suspension axis to the centre of gravity). By denoting @’ =mgl/J
and multiplying the equation (15.1) by ¢ and integrating, we find that

w?—a)2 cos@ =h, (15.2)

where /4 is a constant of integration. Assuming an angular amplitude of the
pendulum to be equal to ¢, we obtain @ =0 when @ = & . Let us express, in
accordance with (15.2), the integration constant through & and write (15.2) as

¢2
7—&)2 cos@ = -’ cosr

or

(pzw\/Z(cosgo—cosa). (15.3)
From the equation (15.3) it follows that

dp dt

= 15.4)
a)\/2(cos¢— cos ) (

Let the oscillation period be T at the amplitude @ . Then, with the pendulum
deviation angle 7 varying from zero to ¢« , the clock will run a quarter-period,
and according to (15.4), we shall get

T 9 do

4 J @\J2(cos g —cosa)

This integral is not computed in elementary functions. It can be expressed
numerically. For small &, being suitable for us, we may take the Taylor-series

expansion in the parameter ¢ . With accuracy up to o>, this representation will
be as follows

[2(cos@~cosa)] ">

2 4 2
(7 Q@ o

=2 -=—+ - y-a-Z+
{2[( Y, )—( 5

4
a

g =

2

= (@ —pt) (1= ¢’ 1"'29' 4oy
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¢2+a2

+...
24 )

=(a,2 _¢2)—1/2(1+

and, hence,

a 2 2
Tzij‘(1+¢ a +...) dg

@ ; 24 a’ - ¢’
or, after the substitution of @ = siné,
4/r/2 2 1 s 2
T=2 J‘(l+g—(~—t§9——@+...)d¢9=
@ g
2r ot
=—(0+—+..). 15.5
a)( 16 ) (15.5)

As for the accuracy of this formula, it can be seen from the plot in figure 15.2,
where the continuous curve represents the values calculated by the formula placed

in brackets in the right-hand side of (15.5), i.e. @I /2, and the broken curve
represents the plot of the first two terms in these brackets, i.e. 1+ @ /16. From
this figure it is seen that these plots are indistinguishable for a<7/2 .

T
7}34

Yo

72 T

Fig.15.2. A dependence of the pendulum oscillating period 7" upon its amplitude.
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From the formula (15.5) itself, it is seen that for small amplitudes ¢, the
period of the pendulum oscillations is changing a little. For example, for
« < 0.1, it changes not more than 0.7% . Meanwhile, with the amplitude &
changing by A, the period T will change as below

a’_T_ aAa

A —————
~

T 8

For @ = 0.1 and for the desired accuracy dT/T =107°, Aa should not

exceed 4 X 10—4, ie. a large invariance of amplitude is needed. In this
connection, people used to ponder upon the problem of whether it is possible to
design a pendulum of the period being independent upon its amplitude. Such a
pendulum was devised. Its idea lay in the fact that the pendulum was made
swinging not along a circle but along some curve, and this can be attained in the
way as shown in figure 15.3, where IT is a flexible plate, and H are the guides
restricting its motions. Here, the line L directed along the pendulum suspension
touches all the time the guide H .

Fig. 15.3. The guide restriction F allowing to change a trajectory of pendulum
oscillations.

Let the desired curve, along which the pendulum (a material point of the mass
m ) is to swing, be described by the equation

x=x(s), y=y(s), (15.6)

where § is an arch length being counted from the bottom point of the curve
(Fig.15.4).
Let us write the motion equation of the mass 7 . The Lagrange function is
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L= %s’z -mgy(s).

Hence, we have

m$ +mgy'(s)=0. (15.7)

mg

Fig. 15.4. An illustration of a search for a curve along which the pendulum must oscillate
so as to have its oscillation period not dependent upon its amplitude.

The solution to this equation will be periodic, with a period being independent
upon initial conditions, and, therefore, independent upon its amplitude, if this
equation coincides with the linear harmonic oscillator equation, i.e. when

gV'(s) = o’s (15.8)
with any @ . Solving this equation, we find

2
2

=—3", 15.9
28 (15.9)

y

where any constant is absent, since according to figure 15.3, we have y =0 for
s=0.

It remains to find the function x(s) . This is easy to make starting from the

expression
dx’ +dy’ = ds*
or
dx.,  dy.»
—) +(—) =1. 15.10
(dS) (dS) (15.10)

From (15.9).and (15.10).it follows. that
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(15.11)

or
x=j 1—(;0;)252ds= JVl—azszds. (15.12)
g

By using the substitution § = a”'sin @ , we take the integral (15.12), and then,

taking into account (15.9), come to the following parametric equations of the
curve desired

x:iz¢+—§7sin2¢, y=2—%sin2¢. (15.13)
2w 4w @

This is a well-known cycloid, and its form is shown in figure 15.5. The cycloid
differs from a circle in that that it is ascending from the point x = y =0 faster
and faster than the circle, and hereby rolling the pendulum down it is accelerated
as its deviation is increasing. For small ¢, this distinction is, naturally, small, as
small also is the difference between the circle pendulum oscillation equation and
that of a linear harmonic oscillator, i.e. similar to the small distinction between
sin@ and @ .

Fig. 15.5. A comparison of motion trajectorie; for circular and cycloidal (broken curve)
pendulums.

Thus, we have considered a dependence of the oscillation period of the
pendulum upon its oscillation amplitude and have also estimated the influence of
amplitude variations upon running accuracy of the clock. It was revealed that this
dependence can be escaped and the possible reason of lessening the clock running
accuracy can be eliminated; if @ circlependulum is replaced by a cycloid one.
However, a change of the amplitude is far from being a unique reason affecting
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the running accuracy of the clock. The pendulum length can vary, and substantial
displacements of the clock can result in a change of gravity acceleration. In our
considerations, we have omitted the inevitable presence of viscous and dry
frictions. The instability of the period can be also caused by a pushing mechanism
responsible for sustaining pendulum oscillations.

Thus, instability and a loss of accuracy can be brought about by many reasons.
If we are wishing to design a high-precision clock, we need to have all these
instability factors investigated, estimate their magnitudes and find the ways to
eliminate them.

By virtue of their smallness, all these instability factors can be investigated
separately and independently upon each other, taking into account not all of them
together, but each individually. This large simplification assumed can be

substantiated as follows. Since the oscillation period 7" is a function of many

parameters #,, U, ,..., U, ofa clock mechanism , we obtain

T=T@,,u,,...u,).

*

* *
Let u, ,u, ,..,u, be the nominal values of the parameters and

Ou,,0u,,...,0u, be their possible variations. Then, with accuracy of up to these
smallest changes, the below

or .. or . or ..
OT = ()" i, + (=) i, + .o+ () S
(aul) i (a ) u, (au) m

2 m

will be true. Here, the derivatives of the function T are calculated for the nominal

values of the parameters, i.e. the derivative —— is calculated by assuming it

Ou,

independent upon the rest parameters u,, #,,..., U, except U_.

m

In view of this, the dependence upon a length, a viscous friction and a gravity
acceleration can be calculated within the assumed accuracy through making use
of the simplified pendulum oscillation model, which does not consider the
dependence of pendulum period upon the amplitude, i.e. from the linear oscillator
equation

.. . mgl
250+t =0, (0* ="E (15.14)
4 4 p ;
with the oscillation period being equal to
2
T=—ri—. (15.15)

)
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For the sake of simplicity, a basic mass of the pendulum is assumed to be
concentrated in a single place. Then, J = ml % and (15.15) will be of the form

2
_y \f 115
Ig 52

(1+=—+..),
from which the following estimate can be found

dT  1dl 1 l§d§
—=——-=dg . (15.16)

T 21 2 g

These estimates demonstrate a strong dependence of the movement accuracy
upon changes in length, gravity and in viscous friction as well, if the latter is not
very small.

In general, the pendulum length is affected by temperature changes. Therefore,
this movement accuracy loss can be eliminated through sustaining the
surrounding temperature  constant. However, there exists another way of

sustaining / constant in spite of temperature changes. This way, as shown in
figure 15.6, lies in a special design of the pendulum. With the temperature being

increased, the lengths /; and /, are increasing by J/, and J1,, and meanwhile
the pendulum length is increasing by & — O/, . The rods of lengths /; and /,
are made of different materials of the thermal expansion coefficients &, and

&, , and these coefficients are chosen so as to nullify the extension magnitude

equal to
Sl1= 81— 61, = (e, — a,l,)oT

with OT being a temperature change, i.e. to choose these coefficients so that to
obtain o/, —ar,l, = 0.

L

Fig. 15.6. The structural scheme of a suspension for a pendulum of the length independent
upon temperature.
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For the clock with a fast change of its position, i.e. when, say, being mounted
on a fast sailing ship, it seems impossible to kill this dependence upon the gravity
acceleration. One can only compensate this dependence through introducing
associated computational corrections, or replace the clock pendulum with a
spring-attached balance. This very technique came soon into being, the Huygens
clock was replaced with a ship chronometer.

Also we should estimate the influence imposed by dry friction. According to
the above, it is enough to consider the model

P+’ p=—fsigng, (15.17)

where [ is a parameter informing about the availability of Coulomb friction. As
we see below, dry friction leads to decreasing oscillations, but their period is not
changing. Indeed, at each half-cycle of oscillations, the magnitude ¢ does not
change its sign and hence, for example, for @ > 0, the equation (15.17) is written
as

pro’p=—f
or, upon replacing @ by @ — f /", as follows
p+o’p=0,

where the dependence upon friction f vanished, i.e. it is not there.

Let us now turn to considering a technique of how to sustain pendulum
oscillations and how this technique affects the stability of clock running.

Clock drivings are very different in construction (cylindrical, anchor,
chronometer and others) and their exact description is rather difficult. Let us
assume an idealized scheme of a clock driving by thinking that this drive gives a

jog at the angle @ =a (¢ > 0) supplying the impulse p, and beyond this
pushing impulse a motion of pendulum will follow the equation

P+20p+ 09 =0. (15.18)

The jog occurs at @ = and @ >0, and it entails an instant increase of
pendulum velocity ¢ by the quantity p , and, therefore, we get

¢+ = (b_ +p, (15.19)

where @_ is a prejog angle velocity , and ¢, is a postjog velocity. During the
impact, the angle @ has no time to vary. Let us draw a phase trajectory
representing a single oscillation from the point @ = & to the same point @ = &

againy et 5 beaninitial pointand: M , be the reiterated point, where @ = &,
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provided that the motion is described by the differential equation (15.18). At the
instant when the pendulum arrives to the point M, there occurs a transfer of the
impact p , and the point M will displace along the axis ¢ at the distance p
(Fig.15.7) to the point M ,.

——

Fig.15. 7. A phase trajectory of the clock and a technique to study it with the help of a
point mapping of the point M0 to the point M2 .

After this, the entire cycle described will be repeated (except the case when
the phase trajectory outcoming from the point M, will not cross the line
@ = @ any more).

Let us analytically express the dependence of the described motion first from
the phase point M, to M, and then to M,. Suppose that the points

M,,M ,M, have the coordinates @, =« and @,, @, =& and @,,

@, =« and @, . According to the equation (15.7), the points M, and M, are
mutually dependent as

@, + Ot

o, =e (o, cosQr+—~—é~&sinQr)

: +0p, .
@, =e " [-op, cosQr+¢°—Qﬁstr) -

- Q@,sinQr+ (¢, +0p,)cosQr], (15.20)
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where 7 is a time of motion from the point M, to the point M, and
Q=+vw? -5 . According to (15.19), for the points M, and M ,, we have

O, =0, O, =P +p. (15.21)

Besides, we should remember that

Dy=0 =9, =C. (15.22)
Denoting ¢, =u and @, =u , from (15.20)-(15.22) it follows that

U+ oo

a=e " (acosQr+ sin Q7)

(15.23)

2
u= p+e'5’(ucosQr+&C;g—2—zsinQr).

The first equation in (15.23) determines the time 7 as a function of # and the
second one allows to find # .

Analysis of these equations is rather complicated, but for ¢ =0 it is
substantially simplified, since in this case the formulas (15.23) will be of the form

sinQr=0 (u=#0), u=e"ucosQr+p,

from which it follows that 7= 27/Q ( the positive root of second value to the
first equation was taken, because for the another root we have ¢, <0, which
also is seen from figure (15.7)) and that

u=e"u+p. (15.24).

Prior to analysing this surprisingly simple result, let us show that it is this very
result that is worthy of our attention first of all. The matter is thatitisat & =0
that the dependence of the oscillation period 7 upon the velocity # vanishes.
The period is constant and equal to 277/ (2. On the contrary, for & # 0 such a

dependence exists and follows from the equation (15.23). Indeed, differentiating
the first equation (15.23) in %, we find that

u+oa

0=—e" E(acosQr+
u

sin Q7)+

+ e“g’[—-aQsinQr—d—T+ —l—sinQr+ (u+ o‘cx)cosgfﬂ].
du Q U
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Consequently, we have

dr _ sinQr

du Q[(a—u—&a)cosQr+(u+§a

+0Q2)sin Q7]

and, hence, d 7/ du does not vanish, since 7 is different from 27/ .

This very fact can be revealed immediately from the form of the phase
trajectory in figure 15.7. From this figure it is seen that 7> 27/}, since we
have there & > 0. On the contrary, for & <0 it is seen that 7 < 27/€). The
said becomes obvious, if one observes that any phase trajectory crosses any ray
@ = a@ repeatedly after one and the same time 277/€).

Let us return to the earlier found relation (15.24) that determines a connection
between sequential angle velocities at which the pendulum passes upon jogs the
vertical equilibrium position. This relation, i.e. this connection between u# and u ,
can be supplied with a very simple geometrical interpretation that will be useful
in many cases. Let us take the Cartesian coordinate system, by placing # and u#
on its axes, and draw the plot of the mapping (15.24) (Fig.15.8). Now, let us
supplement it with a bisector and determine # for the given . Then transfer it
to the axis # again, as shown in figure 15.8. Repeating this way of construction,

we will consecutively find % ,7 , etc. From this figure it is seen that the

sequential points #,u ,7,... are approaching the point u' , corresponding to the

intersection of the curve (15.24) with the bisection. The value u’ itself passes into

itself since # =1 and, hence, according to (15.24), we obtain

u* :e—Zzzé'/Qu* +p
and
* p '
u —1—_‘;'2%. (1525)

Thus, with the pushing impacts supplying the equilibrium-passing pendulum
with a constant impulse, its oscillations will asymptotically approach the periodic

oscillations of the period 277/€2 and of the velocity amplitude equal to u".
Thereby, the damping pendulum oscillations are converted into auto-oscillations.
Such a conversion is achieved through regulating the pendulum motions by a
feedback, i.e., more precisely, through a clock movement that implements the
feedback. A general idea of a control and a feedback is of fundamental importance
in_science and engineering. We shall encounter it many times, and right now, let
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us restrict ourselves to the explanation of what control itself is and why it is
implemented via a feedback.

u Mo op*

Fig. 15.8. The Keniks-Lamerey diagram for the Galileo-Huygens clock ; u is a stable

fixed point corresponding to the auto-oscillations in the clock; 4,4, ,... are successive

*
approximations to the point # .

In our case, regulating a pendulum implies the fact that  the pendulum is
acted upon by impacts coming from some exterior source of energy. These
impacts are imposed upon the pendulum when it is passing through its
equilibrium position, i.e. an influence upon the pendulum is exerted depending
upon the motion of the pendulum itself. The pendulum is acting , as it were, upon
itself implementing a feedback and exploiting at this instant an exterior energy
of the main spring or a falling bob.

Generally speaking, control exists in nature and is used by a human being in
order to implement somewhat purposes. In many cases it is applied to correct the
things that are happening with our object under control, i.e. control is executed
with the help of feedback and some energy source needed for this feedback.
Though there exist the cases when control implements a preassigned plan or
obeys to somewhat commands from the outside.

In conclusion, some words touching the relationship between the mapping
(15.24) and the diagram in figure 15.8.

The technique through which we have come to the relation (15.24) is of a
general character. It was invented by J. H. Poincare; and it is widely used in the
oscillations theory and the theory of dynamical systems. In its general
formulation, it implies that a description and an investigation of dynamic system
motions are reduced to a derivation and a study of some point mapping. From this
general point of view, the relation (15.24) will be a point mapping of a line into
itself that transforms any its point with a coordinate # into another point of the
coordinate # . This very point mapping is constructed with a use of the
technique shown in figure 15:8. The diagram of figure 15.8 was first employed by
Lamerey, and a line-to-line point mapping was studied by Keniks. In this
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connection, this diagram was called the Keniks-Lamerey diagram. This name was
given by A.A. Andronov who improved and widely used it in solving a wide range
of urgent problems in the oscillations theory and the control theory.

It is enough, perhaps, for a first talk about the Poincare method and point
mappings. Further knowledge about it you will get from the appropriate courses
on the control theory and the theory of dynamical systems.




16 Generator of electric oscillations

A generator of electric oscillations as an electric analogue for the Galileo-
Huygens clock. The Van der Pol equation and its phase portrait. An
approximate investigation of the Van der Pol equation and reducing it to a
point mapping. A soft excitation of auto-oscillations.

As an electric analogue for a pendulum there serves an oscillating circuit
composed of a capacitor and a self-inductor. Similar to the way when pendulum
oscillations in the Galileo-Huygens clock are sustained through pushing impacts
of the clockwork, the oscillations in an electric circuit can be sustained by means
of special devices, an electronic tube or a transistor. These devices should be
responsible for pumping up energy in order to compensate its dissipation for
unavoidable ohmic resistance. A pushing impact upon a clock pendulum has to
be agreed with its phase, and, in this sense, serves as some control. Analogously,
sustaining electric circuit oscillations, i.e. a generator of electric oscillations,
through an electronic tube or a transistor also carries a regulating nature. An

electric scheme for one of such a controllable energy pump-up is shown in figure
16.1.

Fig. 16.1. A scheme of a vacuum-tube generator.

Here, an electronic tube, as/a component of the scheme, has a cathode, an
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anode and a grid. Through a grid voltage, the resistance of the tube between the
cathode and the anode can be changed practically without any energy supply.
Thus, if some voltage is applied between the cathode and the anode, then the

current [, running from the cathode to the anode, will be determined by the grid
voltage E ¢ - This dependence is of the form shown in figure 16.2. You probably

remember from the secondary school why the plot of the dependence 1, (E g) has

this very shape. This is so because a heated cathode emits electrons, and the
voltage £ ¢ on the grid, placed between the cathode and the anode, supports or
resists their arrivals at the anode, thus increasing or decreasing the anode current.
Let us write now a mathematical model for the electric scheme presented in
figure 16.1. Let [, be an anode current, £, be a grid voltage (relative to the

cathode), and ¢ be a charge of the capacitor. Also let C,R and L be

capacitance, resistance and self-induction, respectively, and M be a coefficient
of mutual induction between coils in the anode and grid circuits. For the
oscillating circuit consisting of the self-induction L , the capacitance C and the

resistance R , we shall have

I=q, E, =5
(16.1)
JUAR T v i
dt C dt

In order to go further, the form of the dependence [, (E g) should be specified.

For this purpose, assume that

I, =a+fE, -, . (16.2)

In doing so we neglect the capacitance in the anode circuit and assume the anode
current to be determined by the formula (16.2) approximating the dependence of
figure 16.2. Now we get

.. . q £ 3y ..
Lij+Rj+L-=ME-L
GHRG+ =M )
or
. R MpF . 34 .
q+(————ﬂ)q+ g+ =0, (16.3)

L CL LC’® CL
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Fig. 16.2. Dependence of the anode current upon the grid voltage in the triode electronic
tube.

The equation (16.3) is reduced to the well-known Van der Pol equation

i~20(1-au’ i+ o’u =0, (16.4)
where

:A_lé._ﬁ a:(%ﬁ___lg_)—l 3}/ 2 1

25 , = 0t =—.
CL L cL L LC LC

It is assumed here that >0, a >0 and @” >0.For a =0 and very small
U, the Van der Pol equation will turn into a linear oscillator with the negative

friction & > 0. For u” >1/a, the coefficient in front of % becomes positive,
and we can rightfully suppose that in this case the oscillations are damping. Thus,
the equilibrium state of the Van der Pol oscillator is unstable and small
oscillations are growing, while very large oscillations are damping, and,
therefore, between them there should exist a stable periodic motion I (Fig. 16.3).
One may be persuaded by this truth-like assertion, if he looks at the phase portrait
of the equation (16.3) on a computer display . Analytically this fact can be easily
proved for a sufficiently small O, and in doing so we are proving not only an
auto-oscillatory nature of this system at o0 >0 (i.e. for a sufficiently large M )
but also shall reveal an approximate value of the auto-oscillation amplitude.
Let us write the Van der Pol equation (16.3) in the form

i+ o'y =—ai’u+2di, (16.5)

where the magnitude
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is assumed to be small, as well as & . This allows us to write the solution to the
equation (16.5) as

u = Acos(wt + @), (16.6)

where, due to smallness of & and 0, A and @ are slowly changing functions

of time. That such a representation is possible does not give rise to any special
doubts, but, nevertheless, a request for its specific form will entail some
difficulties. These difficulties, first of all, will be caused by the fact that such a
representation is defined not uniquely. Though, due to this very lack of
uniqueness, we may to the condition (16.6) add another one, for example,

u=-wAsin(wt + @) , (16.7)

whereupon 4 and @ will be expressed through # and # . Further, one may be

convinced immediately of the derivatives A and @ along the solutions of the

equation (16.5) being small in view of smallness of ¢ and & .

Fig. 16.3. A phase portrait for the Van der Pol equation; [ is an auto-oscillation, a stable
periodic motion.

Consider now how energy of the oscillator relating to the equation (16.5) with
£=0 =0 varies with time. Its energy is equal to

E=%(u2+a)2u2), (16.8)

and its derivative, according to (16.5), is of the form
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Cfl—E=ua+w2uu =Q5-a’ ),
t

from which, in view of (16.6), (16.7), we get

%f— =[26 - &’ A° cos* (wt + p)|4° @’ sin® (wt + p)). (16.9)

By integrating the equation (16.9) under the same assumptions A= ?=0,we

will determine that the change of the energy for the period 277/ @ is equal to

=@A2 40 (16.10)
w w

On the other hand, according to (16.8) and (16.6), one has E =@’ 4% /2.
Therefore,

2 4

AE = %AAZ = 26wA? — ;zaa)%

or

A4? :@AZ—EA“. (16.11)

@ w

By denoting through 4, and A ,, the A- amplitude successive values, lying in

n+l

the interval 277/ @ distant from each other , we come, with accordance to
(16.11), to the relation

A =g Ty
a

, (16.12)
which can be investigated by means of the already known Keniks-Lamerey
diagram. From the form of these diagrams (Fig. 16.4) for 0 <0 and 0 >0 and
with & > 0 being constant, it follows that for & < O (Fig. 16.4a) the amplitude
A of the motion is decreasing down to zero, that is, the equilibrium state is
globally stable. On the contrary, in the case of our interest ( 0 > 0 ) (Fig. 16.4b),
the form of the corresponding diagram betrays an instability of the equilibrium
and an availability of a globally stable auto-oscillation (a periodic motion). The
amplitude A" of this periodic motion is determined from the condition
A,,, = A, and equal to
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A4 = (16.13)

>0 £>0

2
s )

-—_—————

r

A*? Aﬁ

Fig. 16.4. The Keniks-Lamerey diagrams for soft excitation of auto-oscillations as the
parameter O is growingupa for O <O and b for 0 > 0. For J =0, from the

*
equilibrium losing its stability, there is born a stable fixed point A corresponding to an
auto-oscillation.

Under the assumptions done regarding the smallness of & and &, a period of
the corresponding auto-oscillation is approximately equal to 277/ @ . For the sake
of visualization, let us also construct a bifurcation diagram for the equilibrium
and the auto-oscillation born from it when O changes its sign (see figure 16.5).
Here, the points on the abscissa axis correspond to the equilibrium states which
are stable for 0 <0 and unstable for 0 > 0. A loss of stability occurs at

0 =0 and together with it, when O is increasing, there appears an auto-
oscillation whose amplitude is increasing from zero, i.e. it is being born, so to
say, by the equilibrium changing its stability.

All the above conclusions have been derived by us from an approximate form
of the point mapping (16.12), assumed to be accurate. Couldn't it lead us to an

error? In general this is possible, but only with @ or A being sufficiently large.

For @ or A being small, the point mappings in figure 16.4 vary a little and the
general conclusions remain, as previously, valid. These conclusions remain valid
for sufficiently small @ or A ,i.e. when O and & are sufficiently small. On the
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contrary, a change in the form of the anode-grid characteristic /, =1 _(E g) can

result in considerable consequences. We will consider them, because it will allow
us to reveal how auto-oscillations appear, if a equilibrium state is losing its
stability, and to mathematically describe, first, the phenomena of a soft and a hard
excitations of auto-oscillations and, second, the so-called hysteresis phenomenon.

Fig. 16.5. A bifurcation diagram for soft excitation of auto-oscillations. As the parameter
o/ & is growing up and passing through zero, the equilibrium loses its stability and
becomes unstable. Simultaneously, there is born an auto-oscillation whose amplitude will
grow under a further increase of the magnitude O/ &.

A soft excitation of auto-oscillations implies a smooth (from zero) appearance
of auto-oscillations being born by the equilibrium state losing its stability because
of changes in system parameters — this exciting way was described above. This
excitation is soft, for it appears smoothly from zero. It is worth to emphasize here
that auto-oscillations are born as a result of a change of system parameters.

If system parameters are changed in the inverse direction, the entire picture of
auto-oscillation birth is repeated in the inverse order. As an adequate
mathematical model for the soft excitation there may be used the sequences of
phase portraits or of point mappings corresponding to the bifurcation diagram
shown in figure 16.5.

A sequence of point mappings and phase portraits is shown in a series of three
figures (Fig. 16.6). The first plot relates to a stable equilibrium; the second
corresponds to the situation arising immediately after an instability appears; and
the third takes place when further change of the parameter causes a growth of
auto-oscillation amplitude. Such a soft excitation of oscillations caused by a
change of parameters is observed in real systems, but along with it there exists a
quite different way of exciting the auto-oscillations, called a hard excitation. In
this case, the picture is changed drastically: auto-oscillations appear by jump and
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immediately take a finite and possibly large value. If changed inversely, the
picture is not repeated in a reverse fashion. It becomes quite another.
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Fig. 16.6. Successive shapes of the Keniks-Lamerey diagrams and the corresponding phase
portraits under soft excitation of auto-oscillations with &/ & growing up.
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Constructing phase and bifurcation portraits for soft and hard excitations of
auto-oscillations on the basis of a point mapping study.

We have already become acquainted with the phenomenon of softly exciting auto-
oscillations with the help of the example of a tube generator (this example has
played a historical role at the beginning of the previous century) and with the
Van der Pol differential equation describing its dynamics. This phenomenon is of
a general nature and relates to the bifurcation of bearing a stable periodic motion
(i.e. an auto-oscillation) arising from a stability-losing equilibrium state. This
bifurcation was named after A.A. Andronov who was the first to have revealed it.
You were shown an associated figure containing successive stages (picture
fragments on a film) of the softly excited auto-oscillations in the two-
dimensional phase space. These pictures are suggested to be considered a
geometrical mathematical model for this phenomenon, while the Van der Pol
equation may be considered to be its simplest specific analytic model.

However, auto-oscillations can be excited by parametric variations not only in
a soft but also in a so-called hard way. This process can be observed on the same

tube generator, whose anode characteristic 1, = [, (£ g) is of another form, for

example, like

I, =fE, +)E, +uE,, 17.1)

where the absence of even degrees is inessential because they do not reveal
themselves at all in our approximate investigations.

We have to repeat the preceding computations for this more general case, when
one more term is inserted into the characteristic (17.1). Then we come to a point
mapping of the form

4zo
A P=(1+2947 +54" +6,4°. (17.2)
n+l n n n
w
Here, the first two terms coincide with those from the previous case and the third
is new. The coefficients & and &, are proportional to » and #/, and, by the
assumption, they and O are small. Besides, simulating the anode characteristic

via the polynomial (17.1) is acceptable only within some finite domain of
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changing F ¢ » and this constraint yields a boundedness of the amplitude A, in

17.2).

( He)re, we shall have to investigate the point mapping (17.2), with the above
constraints taken into account. If all possible cases must be distinguished by
signs of parameters O, &, and &, , then this will lead us to eight different
variants. For each of them there is given in figure 17.1 a respective plot of point
mapping, the Keniks-Lamerey diagram. These diagrams are divided into four

couples, a, b, ¢, d, each of which corresponding to 0 <0 and J > 0 when

&, and &, are identical.

The case d conforms to the already known soft excitation of auto-oscillations
during a continuous passage from 0 <0 to & > 0 ; the case ¢ represents a new
hard excitation we are interested in. The cases a and b are rather of a theoretical
nature, since they do not correspond to any actual performances of an electronic
tube.

Let us focus our attention upon the case ¢ representing it explicitly in the form
of five sequent plots of the point mapping (17.2) for the increasing values of the
magnitude o (Fig. 17.2).

From these plots it is seen that initially there is the stable equilibrium O, and

then there appears the semi-stable periodic motion M, (more precisely, the
semi-stable periodic motion corresponding to the fixed point M,, ) being
decomposed into the stable periodic motion M, and the unstable periodic
motion M, . With O increasing further, the amplitude of the unstable periodic
motion M| will be decreasing and that of the stable motion M, increasing;

and this will produced a confluence of M| with the equilibrium state O which

will, because of this, turn unstable.

The phase portraits depicting these transformations are presented in figure
17.3. On the basis of these pictures, let us now construct a bifurcation diagram. It
is depicted in figure 17.4. As you see, it differs from the bifurcation diagram
constructed for the soft excitation (Fig. 16.5). What follows from this difference?
First of all, if earlier, with O growing across zero, the equilibrium state was
losing its stability and was giving birth to a stable periodic motion, then now an
unstable periodic motion is merging with this unstable equilibrium; as a result, the
system, being earlier in the stable equilibrium, will leave it and pass at once into

the periodic motion M, of a finite amplitude. Here lies the idea of a hard mode

for exciting oscillations. In this mode, auto-oscillations of a finite amplitude arise
immediately, on a stepwise basis. Of course, they are established in a steady way,
not instantly, but upon some period of time, and during this period, the
oscillation amplitude is growing continuously and, as a parameter is varying, a
steady-state (or stationary) motion will arrive by jump.
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Fig. 17.1. Possible shapes of the Keniks-Lamerey diagrams for the polynomial anode
characteristic (17.1) as consistent with the shape of the point mapping (17.2).
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o

Fig. 17.2. A sequence of the Keniks-Lamerey diagrams for hard excitation of oscillations:
at first, the equilibrium O is globally stable; then the semi-stable fixed point M 12 18

born, and then it is decomposed into two points M ,and M » 5 then the point M ; merges

with the equilibrium O and makes it unstable; and, as a result, the fixed point M , turns
out to be globally stable.

Thus, the first specificity of the hard excitation of auto-oscillations as a
physical phenomenon consists in a jump-like change of the nature of the motion,
but not smoothly, with a parameter being varied. Mathematically, this specificity
is reflected by the fact that an equilibrium state does not give birth to a stable
periodic motion; instead, an unstable periodic motion merges with the equilibrium
state, and the points, lying close to the now becoming unstable equilibrium state,
are now tending to the earlier existing stable periodic motion.

The second essential specificity lies in an irreversible nature of a hard transition
from an equilibrium to a steady-state motion, viz. when O is increasing across
0 =0 there appear hard auto-oscillations, but at the inverse decrease of

O across zero, the auto-oscillations do not vanish and remain varying their
amplitude continuously. In order to pass from hard arising auto-oscillations to a
stable equilibrium state, the parameter should be decreased until some negative

value =0 (Fig. 17.4), whereupon the auto-oscillations will vanish by jumps
and a transition to a stable equilibrium will occur. The disappearance of a stable
auto-oscillation is_accompanied by its merge with the unstable periodic motion

and by their joint disappearance (for J = 0 " the stable periodic motion M, will
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merge with the unstable motion M, andat & < & they disappear). Thus, as it is
shown in figure 17.4, in the course of the hard excitation, auto-oscillations appear

and disappear at different values of the parameter o . This phenomenon looks like
a hysteresis of ferromagnetic bodies.
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Fig. 17.3. The changes of the phase portraits corresponding to the changes in the Keniks-
Lamerey diagrams in figure 17.2.
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Fig. 17.4. A bifurcation diagram of hard excitation of oscillations. The circles and daggers
correspond to stable and unstable equilibrium states and periodic oscillations.

I would like to finish my narration on soft and hard excitations of auto-
oscillations with some mental experiment. Suppose you are sitting at a computer
and, with some rolling knob, you can regulate (i.e. increase or decrease ) a
parameter of a dynamical system. Simultaneously, you can observe on a computer
monitor how a state of the system (one of its components) is changing. Then, in
case of the soft excitation regime, your rolling the knob slowly will, at first, bring
you no oscillations. Then, they will be arising and their amplitude will be
growing slowly; the slower you are rolling your knob, the slower they are
growing (Fig. 17.5). If you roll the knob in a reverse direction, all you saw
previously will be repeated in a reverse order.

Fig. 17.5. An oscillogram of soft excitation of oscillations with smoothly changing the
parameter.
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For the hard excitation regime, at first, there will be no oscillations either; but
then they will be arising at once, and a fastness of this transition will not decrease,
if you are even slowing down your knob rotation (Fig. 17. 6).

il Il Il
RUIIT

Fig. 17.6. An oscillogram of hard excitation of oscillations with smoothly changing the
parameter.

Y

With a reverse rolling of the knob, the picture will not be changed in reverse.
The auto-oscillations will vanish and by a leap as well, if you roll the knob
inversely for a longer time.
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An oscillator of an unpredictable behaviour. A mathematical model, a
phase portrait and a point mapping. Unpredictability and randomness. Two
kinds of behaviour of dynamical systems. Stability and instability,
predictability and unpredictability. An oscillator (a dynamical system) as a
generator of stochastic oscillations.

In the previous chapters we have analysed the Galileo-Huygens clock. The basis
of this clock is a pendulum or any another oscillator with oscillations of a
sufficiently stable period being sustained by any energy source. A stability of the
period of oscillations means an accuracy of the clock. We have studied the
possible reasons for instability and the ways to reduce it. A very important point
for stability was a smallness of damping, which implies both a small dependence
of the period upon this damping and a sufficiency of very small impacts and a
small instability being caused by the impacts.

However, an oscillator can be both a high-precision time measurer with a rather
stable period and can possess chaotic oscillations of sufficiently variable periods
which may become so much greatly different that speaking about an oscillating
period becomes senseless. Moreover, these oscillations obtain a property of
randomnicity; they become unpredictable and may have a probabilistic
description. This surprising opportunity has become a scientific sensation in the
last years. It has changed conventional ideas concerning randomness. It turned
out so that randomness can be generated by a dynamical system being described
by differential equations. This takes place in spite of the fact that the uniqueness
theorem retains still valid and a solution of these equations is still determined
uniquely by their initial conditions (by the initial state). How can it be? It seems
obvious that it is impossible, but nevertheless it can be so and is implemented
around us not less frequently than the determinate processes being described by
differential equations. It turns out that real solutions of the differential equations
can be deterministic and predictable, but they can also be stochastic and
unpredictable.

The purpose of my further narration is to explain how it can be by means of a
very simple example of a stochastic oscillator or the "contrary clock".

A clock is a damping oscillator being pushed from time to time. The "contrary
clock" is a self-swinging oscillator whose oscillations are restrained from time to
time.

The mathematical model of the clock was of the form
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i+20%+@°x=0 for x#0 or x=0,and x <0,
(18.1)

X, =X_+p for x=0and x>0.

The mathematical model of the "contrary clock" (p < a) is as follows

i+2&%+@°x=0 for x#0,orx=0and x<a,
(18.2)

X,=X_~p for x=0and x2a.

The equations (18.2) are obtained from (18.1) by substituting — O for 0 and
— p for p . Besides, it is also zero that is replaced by the number a > 0.

We need to investigate the model (18.2). First of all, let us imagine the form of
its phase trajectory (Fig. 18.1).

~
_/

--—
"y

Fig. 18.1. A phase portrait of the "contrary clock" (a stochastic oscillator).

Then, the investigation of the dynamics of the model (18.2) will be reduced to a
point mapping, to the Keniks-Lamerey diagram. To this end, let us consider the

subsequent departures of the phase point from the semi-axis x =0, x > 0.

Suppose that upon the first intersection we have X =, and upon the second
x.=1 7. Letus determine the connection between # and # . Let the trajectory



18 Stochastic oscillator (the "contrary clock") 207

be departing from the point M (0,u). It will arrive at the half-line
x =0,x >0 again at some point M, (0,u,), where

27207 Q

u, =ue

It is not restrained , if #, < a (Fig. 18.2a) and then u = U, , or is restrained , if

u, >2a andthen u =u — p (Fig. 18.2b).

Fig. 18.2. Possible shapes of phase trajectories for the "contrary clock": a for #; < & and

b for ©; > a. For an oscillation cycle the point M (O,u) passes to the point

M] (0, u, ), at U; > A this passage being performed with a jump from %, to U .
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